UZH-Logo

Estrogen receptor subtype beta2 is involved in neuromast development in zebrafish (Danio rerio) larvae


Froehlicher, M; Liedtke, A; Groh, K; López-Schier, H; Neuhauss, S C F; Segner, H; Eggen, R I L (2009). Estrogen receptor subtype beta2 is involved in neuromast development in zebrafish (Danio rerio) larvae. Developmental Biology, 330(1):32-43.

Abstract

Estrogens are known to play a role in both reproductive and non-reproductive functions in mammals. Estrogens and their receptors are involved in the development of the central nervous system (brain development, neuronal survival and differentiation) as well as in the development of the peripheral nervous system (sensory-motor behaviors). In order to decipher possible functions of estrogens in early development of the zebrafish sensory system, we investigated the role of estrogen receptor beta(2) (ERbeta(2)) by using a morpholino (MO) approach blocking erbeta(2) RNA translation. We further investigated the development of lateral line organs by cell-specific labeling, which revealed a disrupted development of neuromasts in morphants. The supporting cells developed and migrated normally. Sensory hair cells, however, were absent in morphants' neuromasts. Microarray analysis and subsequent in situ hybridizations indicated an aberrant activation of the Notch signaling pathway in ERbeta(2) morphants. We conclude that signaling via ERbeta(2) is essential for hair cell development and may involve an interaction with the Notch signaling pathway during cell fate decision in the neuromast maturation process.

Estrogens are known to play a role in both reproductive and non-reproductive functions in mammals. Estrogens and their receptors are involved in the development of the central nervous system (brain development, neuronal survival and differentiation) as well as in the development of the peripheral nervous system (sensory-motor behaviors). In order to decipher possible functions of estrogens in early development of the zebrafish sensory system, we investigated the role of estrogen receptor beta(2) (ERbeta(2)) by using a morpholino (MO) approach blocking erbeta(2) RNA translation. We further investigated the development of lateral line organs by cell-specific labeling, which revealed a disrupted development of neuromasts in morphants. The supporting cells developed and migrated normally. Sensory hair cells, however, were absent in morphants' neuromasts. Microarray analysis and subsequent in situ hybridizations indicated an aberrant activation of the Notch signaling pathway in ERbeta(2) morphants. We conclude that signaling via ERbeta(2) is essential for hair cell development and may involve an interaction with the Notch signaling pathway during cell fate decision in the neuromast maturation process.

Citations

31 citations in Web of Science®
29 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

64 downloads since deposited on 08 Jun 2009
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Uncontrolled Keywords:Estrogen receptor; Neuromast; Zebrafish; Notch signaling
Language:English
Date:March 2009
Deposited On:08 Jun 2009 12:51
Last Modified:05 Apr 2016 13:15
Publisher:Elsevier
ISSN:0012-1606
Publisher DOI:10.1016/j.ydbio.2009.03.005
PubMed ID:19289112
Permanent URL: http://doi.org/10.5167/uzh-18966

Download

[img]
Preview
Filetype: PDF
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations