UZH-Logo

Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence


Hörtensteiner, S (2009). Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends in Plant Science, 14(3):155-162.

Abstract

Stay-green mutants are delayed in leaf senescence and have been identified from different plant species, including many crops. Functional stay-greens have the potential to increase plant productivity. In cosmetic stay-greens, however, retention of chlorophyll during senescence is uncoupled from a decline of photosynthetic capacity in these mutants. For many cosmetic stay-green mutants, including Gregor Mendel's famous green cotyledon pea variety, molecular defects were recently identified in orthologous stay-green genes. Stay-green genes encode members of a new family of chloroplast-located proteins, which are likely to function in dismantling of photosynthetic chlorophyll-apoprotein complexes. Their activity is considered as a prerequisite for both chlorophyll and apoprotein degradation during senescence.

Stay-green mutants are delayed in leaf senescence and have been identified from different plant species, including many crops. Functional stay-greens have the potential to increase plant productivity. In cosmetic stay-greens, however, retention of chlorophyll during senescence is uncoupled from a decline of photosynthetic capacity in these mutants. For many cosmetic stay-green mutants, including Gregor Mendel's famous green cotyledon pea variety, molecular defects were recently identified in orthologous stay-green genes. Stay-green genes encode members of a new family of chloroplast-located proteins, which are likely to function in dismantling of photosynthetic chlorophyll-apoprotein complexes. Their activity is considered as a prerequisite for both chlorophyll and apoprotein degradation during senescence.

Citations

114 citations in Web of Science®
115 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

65 downloads since deposited on 10 Jun 2009
23 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Date:23 February 2009
Deposited On:10 Jun 2009 14:44
Last Modified:05 Apr 2016 13:15
Publisher:Elsevier
ISSN:1360-1385
Publisher DOI:10.1016/j.tplants.2009.01.002
PubMed ID:19237309
Permanent URL: http://doi.org/10.5167/uzh-18971

Download

[img]
Filetype: PDF (Verlags-PDF) - Registered users only
Size: 2MB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations