A real world implementation of answer extraction

Hess, M; Mollà Aliod, D; Berri, J
A Real World Implementation of Answer Extraction

Diego Mollá Aliod, Jawad Berri, Michael Hess
Computational Linguistics Group
Department of Computer Science, University of Zurich
Winterthurerstr. 190, CH-8057 Zurich, Switzerland
{molla,berri,hess}@ifi.unizh.ch

Abstract

In this paper we describe ExtrAns, an answer extraction system. Answer extraction (AE) aims at retrieving those exact passages of a document that directly answer a given user question. AE is more ambitious than information retrieval and information extraction in that the retrieval results are phrases, not entire documents, and in that the queries may be arbitrarily specific. It is less ambitious than full-fledged question answering in that the answers are not generated from a knowledge base but looked up in the text of documents. The current version of ExtrAns is able to parse unedited Unix "man pages", and derive the logical form of their sentences. User queries are also translated into logical forms. A theorem prover then retrieves the relevant phrases, which are presented through selective highlighting in their context.

1. Answer Extraction: The Core Idea

One of the fields where natural language understanding technology has failed to deliver convincing results is text based question answering. Systems which read texts, assimilate their content, and answer freely phrased questions about them would be very useful in a wide variety of applications, particularly so if questions and texts could be written in unrestricted language. They would be the perfect solution to the problem of information overload in the age of the World Wide Web. However, as the situation is today (and will remain for a long time to come), such systems can be implemented only in very small domains, for extremely small amounts of text, and with very high development costs. One such system, LILOG ([4]), absorbed well in excess of 60 person-years of work and could, in its final stage, still treat merely a few dozen pages of text. Moreover, it turned out to be extremely costly to port the system from one domain to another, closely related, one (many person-months of work). In fact these types of systems have become prototypical cases of non-scalable laboratory applications with very limited impact on further developments.

When it comes to processing larger amounts of texts there have been around only two serious contenders up until now: Information Retrieval and Information Extraction. Unfortunately, both techniques have serious drawbacks. Standard information retrieval (IR) techniques allow arbitrary queries over very large document collections (many gigabytes in size) covering arbitrary domains but they usually retrieve entire documents (this holds true for traditional systems such as SMART [9] as well as for probabilistic ones such as SPIDER [11]). However, this is unhelpful if documents are dozens, or hundreds, of pages long. Sometimes the techniques of IR are also used to retrieve individual passages of documents (one or more sentences, paragraphs) (cf. [10]). In such cases the number of search terms found in a given sentence, together with their density (in terms of closeness in a sentence), is used to find relevant sentences.

Unfortunately, all IR techniques (whether applied to entire documents or to individual passages) have a number of limitations that make them unsuitable for certain important applications. First, they take into account only the content words of a document (all the function words are thrown away). Second, in most cases only the stem of such words is used (and this stem is usually not derived by a proper morphological analysis but by means of some kind of stemmer algorithm, inevitably resulting in numerous spurious ambiguities). Finally, and most importantly, the resulting terms are treated as isolated items whose unordered combination is used as content model of the original document. This holds for Boolean systems as well as for vector space based systems. Inevitably, neither model can, as such, distinguish the concept of “computer design” from that of “design computer” (lost ordering information), or the concept of “export from Germany to the UK” from that of “export from the UK”.

*This research is funded by the Swiss National Science Foundation, project nr. 1214-45448-95
to Germany” (lost function word information). True, most systems can use phrasal search terms (such as "computer design"), to be found as a whole in the documents, but then a number of relevant documents (such as those containing "design of computers") will no longer be retrieved. All this also holds for the (few) passage retrieval systems described in the literature (such as the system described in [10]).

Information extraction (IE) techniques do not suffer from the same shortcomings. They are similar to IR systems in that they, too, are suitable for screening very large text collections (of basically unlimited size, such as streams of messages) covering a potentially wide range of topics. However, they differ from IR systems in that they not only identify certain messages in such a stream (those that fall into a number of specific topics) but also extract from those messages highly specific content data. Typical examples are newswire reports describing terrorist attacks (where they extract the information as to who attacked whom and how and when, what was the outcome of the attack etc.) or newswire reports on management succession events in newswire business reports (with data on who resigned from what post in which company, who is successor etc.). This predefined information is placed into a template, or data base record, defined for the different role fillers of a given type of report.

Clearly, this kind of information is much more precise and specific than what is considered by IR systems. On the other hand, IE systems do not allow for arbitrary questions (as IR systems do). They merely allow for a small number of pre-defined information frames to be filled. Worse still, the “Message Understanding Conferences”, which have been driving development in this area since 1987 (the latest so far, with published proceedings, is MUC-6 [3]), put so much emphasis on very large text volumes that most of the participating systems that had used, at first, a thorough linguistic analysis had to abandon it and adopt a very shallow approach instead, simply because of run-time requirements for such volumes of data (e.g. [1]). This approach, which is now taken by most systems taking part in MUCs, makes the systems increasingly less general.

However, there is a growing need today for systems that are capable of locating information in texts not running into the gigabytes but which should show very high precision and recall and which should furthermore allow arbitrarily phrased questions. Moreover they should be able to cope with documents written in syntactically unrestricted natural language whereas the domain of the texts is normally quite restricted. Examples for such systems are interfaces to machine-readable technical manuals, on-line help systems for complex software, help desk systems in large organisations, and public inquiry systems accessible over the Internet. For these tasks, very high precision of retrieval is mandatory (queries may be very specific), often near perfect recall is vital (technical manuals typically explain things only once), and sometimes retrieval time is mission critical (retrieving information about a system about to get out of control). What is needed in such situations is a system that pinpoints the exact phrase(s) in a document (collection) from whose meaning we can infer the answer to a specific question. This is the core idea of Answer Extraction (AE).

Since we need to determine the meaning of sentences (questions and texts) we must use a (limited degree of) linguistic (syntactic and semantic) information, which is expensive, but on the other hand the texts to be processed are moderately sized (some hundreds of kilobytes, sometimes a few megabytes), and they typically cover a very limited domain. This makes Answer Extraction a realistic compromise between full question answering on the one hand, and mere information extraction or information retrieval on the other.

We will describe an Answer Extraction system, “ExtrAns”, for questions about (a subset of) the on-line Unix manual (the so-called “man pages”). Although the system is, for the time being, functional only as a prototype it can cope with unedited text and arbitrary questions, with performance degrading gracefully if input (documents or questions) cannot be analysed completely. It is incrementally extensible in the sense that refinements of the grammar and/or the semantic component automatically improve precision and recall, without the need to change any other components of the system.

2. Requirements and components

Given the fact that an Answer Extraction system should be able to cope with unrestricted text, it needs a very reliable tokeniser, a grammar of considerable coverage, a reasonably robust parser, some way of dealing with ambiguities, a module that can subject even fragments of syntax structures to a semantic analysis, and a search engine capable of using the resulting knowledge base.

In the following we will describe merely three components of the system in some detail. First, we will point out that preprocessing technical language goes well beyond what a typical tokeniser does. We will not describe the syntax analysis module for which we use and extend an existing dependency oriented system that comes with a full form lexicon, a grammar, and a parser, viz. Sleator and Temperley’s “Link Grammar” [2]. It has certain built-in capabilities for robust parsing, which we supplement by a fall-back strategy that turns unrecognised constituents into keywords (thus resorting to an IR-type behaviour). Second, we will describe the design principles for the semantic representations derived from the (very specific type of) syntax structures produced by Link Grammar. We will not explain in depth the disambiguation module, for which we adopt and extend the approach put forward by Brill and Resnik [3]. Third, we
will show how we cope with the syntactic ambiguities that survive all our disambiguation activities. We will also explain the search strategy very briefly.

3. Preprocessing technical language

The analysis of technical language is, in general, considerably simpler than that of domain unspecific language (newspapers etc.) but as far as preprocessing is concerned it is far more demanding. This holds, in particular, for tokenisation, normalisation, and document structure analysis.

3.1. Tokenisation and normalisation

In general, tokenising a text means merely identifying word forms and sentences. However, in highly technical documents such as the Unix man pages, this may become a formidable task. Apart from regular word forms, the ExtrAns tokeniser has to recognise all of the following as tokens and represent them as normalised expressions:

Command names: eject, nice (problem: identify regular words when used as names of commands in sentences like “eject is used for...”, as opposed to their standard use, as in “It is not recommended to physically eject media...”).

Path names and absolute file names: /usr/bin/X11; /usr/5bin/ls, /etc/hostname.le (problems: leading, trailing and internal slashes, numbers and periods).

Options of commands: -C, -ww, -dFinUv (problem: identify where a sequence preceded by a dash is an option and where not, as in “... whose name ends with .gz, -gz, .z, -z, .Z and which begins ...”).

Named variables: filename1, device, nickname (problems: identify words used as named variables, mostly as arguments of commands as in “... the first mni is the hour number; dd is the day ...”).

Special characters as parts of tokens: AF_UNIX, sun, path, ‘(CTRL-S), KR, C++, name@domain or %, %% (as in: “A single % is encoded by %%%.”), various punctuation marks (as in: “... corresponding to cat? or fmt?”), or in “/usr/man/man?”, “<signal.h>”, or “[host!...host!]host!username ”)

**Normalising such tokens means, among other things, to appropriately mark special tokens such as command names (otherwise the parser chokes on them). Luckily, the Unix man pages contain a considerable amount of useful information beyond the purely textual level, namely the information conveyed by the formatting commands. Thus command names are, as a rule, printed in boldface, and expressions used as variables, in italics, as in

```
compress [ -cfv ] [ -b bits ] [ filename ... ]
```

This type of information is extracted from the formatting commands and added to the tokens for later modules to use (e.g. “eject”, when used as the name of a command, is turned into “eject.com”, and “filename”, when used as an argument, into “filename.arg”).

3.2. Document structure analysis

The formatting instructions in the Unix man pages are, unfortunately, used in a fairly unsystematic fashion (these pages were written by dozens of different persons). In order to extract additional information about tokens from the formatting (see above), the tokeniser must make up for these inconsistencies in the source texts. It does so by performing a considerable amount of document structure analysis. It has, for instance, to collect all command names and argument names from the SYNOPSIS and NAME sections of each manual page to be sure that it will recognise all of them in the body of the DESCRIPTION section, even if formatted incorrectly. Thus, processing a man page becomes a case of processing each of its sections in a particular way.

4. Logical forms

A major property of ExtrAns is that the textual information is converted into existentially closed formulae of logic, which encode the main content relationships between the words of the sentences. All formulae are existentially quantified since, for retrieval purposes, all entities mentioned in a document can be assumed to exist, as generic entities, in the universe of discourse shared by writer and reader. Verbs, nouns, adjectives, and adverbs thus introduce entities in the universe of discourse which can be referenced later. In particular, the verb “copy” in “cp copies good files” introduces, in the predicate \(\text{evt}(\text{copy}, e1, [c1,f1]) \), an entity \(e1 \) representing the concept of copying. \(e1 \) can be seen as a reified eventuality in the sense of \([\text{3}]\). We apply this notion of reification to other predicates also. The noun “cp” introduces a predicate \(\text{object}(\text{cp}, o1, c1) \), where \(c1 \) represents the command \(\text{cp} \) itself while \(o1 \) stands for the concept of \(c1 \) being of the type \(\text{cp} \). Similarly, the adjective “good” introduces, in \(\text{prop}(\text{good}, p1, f1) \), a new concept, \(p1 \), viz. the concept of \(f1 \) having the property \(\text{good} \).

These additional entities \((o1, p1) \) can be used to model intensional constructions like “X is an alleged copy”, where the concept of X’s being a copy is qualified (as opposed to, say, saying that X is a copy and X is also alleged), or “Y is pale green”, where Y’s being green is modified.

As a basic knowledge representation language we use **Horn Clause Logic**, the subset of Predicate Logic which can be directly handled by Prolog. We adopt a mixed-level ontology (largely following \([\text{3}]\)): For each main verb we create one fixed-arity predicate while its (obligatory)
complements and (non-obligatory) modifiers result in additional predicates. The resulting expressions are supplied with pointers to the sentences and individual word forms from which they were derived.

The following two examples illustrate an additional distinction we make:

1. “**cp** copies the contents of *filename1* onto *filename2***

2. “If the operation fails, **eject** prints a message”

In the first example the copying event is asserted to actually hold (in the generic world of man pages), but this is not the case for either of the actions in the second example (failing and printing) since both of them are introduced in the scope of the conditional. Clearly we want passage (2) to be retrievable for appropriate queries (see example below) but presumably we do not want it to be shown when we ask about ways for the *user* to intentionally print a message, as opposed to the printing of error messages, which is merely a side-effect. For this reason we further extend the ontological basis of our system concerning eventualities and state that those eventualities that actually hold in the world are explicitly marked as such. All others are presumed to merely exist in the universe of discourse.

We get thus, for (1), the following representation

```prolog
holds(e1)/s1. object(cp,o1,x1)/s1.
object(command,o2,x1)/s1.
evt(copy,e1,[x1,x2])/s1.
object(content,o3,x2)/s1.
onevent(filename1,o4,x3)/s1.
onevent(file,o5,x3)/s1. of(x2,x3)/s1.
onevent(filename2,o6,x4)/s1.
onevent(file,o7,x4)/s1. onto(e1,x4)/s1.
```

where the copying event is said to hold (holds(e1)), and, for (2)

```prolog
object(eject,o8,x7)/s2.
onevent(command,o9,x7)/s2.
evt(print,e8,[x7,x11])/s2.
onevent(message,o10,x11)/s2.
if(e8,e5)/s2.
onevent(operation,o11,x5)/s2.
evt(fail,e5,[x5])/s2.
```

where neither the failing nor the printing event (e5 and e8) is marked that way. Actual existence may be inferred or blocked or let unspecified, according to context.

As we can see above, the logical forms generated are simplified. The conditional, for example, is not encoded as logical implication but as a regular predicate `if(,)`. The same holds for negation, which is introduced as another regular predicate `not()`. Further simplifications are that plurals, modality, tense, and quantification are ignored. As a result, there is an obvious decrease in precision, but the retrieval results are perfectly sensible as a rule. In fact, in some cases, even if a retrieved sentence does not strictly answer the answer to the query, it does provide useful information to the user. For example, if the user asks “Which commands can print warning messages?” (note the plural and the modal), the system can easily retrieve (3), which contains a conditional whose antecedent cannot be proven to hold, but still the sentence by itself is useful as an answer. Had we used a more detailed logical form, the system would have to resort to possibly complex inferences in order to retrieve the same result. Research in this area is not yet finished, however, and it is possible that more complex logical forms are used in further prototypes of ExtrAns.

Finally, note also that we have used in this representation some of the information extracted by the tokeniser from the typography (and, indirectly, from the document structure) of the text. The fact that “eject” is the name of a command (rather than a regular English word) results in the creation of an additional entry `object(command,x7)`, and similarly “cp” is recognised as referring to a command, too. Without recourse to this type of information the first sentence would become unavailable for queries like “What commands copy files?” and the second sentence would have to be considered ungrammatical.

In order to answer questions the standard search procedure (as implemented in Prolog) is now used to find all proofs of the query over the knowledge base. The query

3. Which command copies files?

thus becomes, after computing the logical form and checking for synonyms (see next section)

```prolog
?- findall(S,(object(command, _,X)\S, 
    (evt(copy, E, [X,Y])/S; 
    evt(duplicate, E, [X,Y])/S; 
    object(file, _,Y)/S) , R).
```

and returns, in R= [S1, S2, ...], the references to the relevant sentences, one of which is (1).

5. A fall-back search strategy

Another important feature of ExtrAns is the linguistically aware fall-back search strategy it uses. For that effect, we are developing a custom-made, WordNet-style thesaurus which contains two types of relations between the concepts in the world of Unix man pages: synonyms and hyponyms.

1. Note that we do not do this yet for objects and properties, though.
2. The pointers to word positions are not shown here.
The overall search algorithm is as follows. First, all the synonyms of all the content words used in the query are added to the query from the start. If the query does not return enough answers, hyponyms of all search terms will be used. If this, too, gives us an insufficient number of hits, all the logical dependencies between terms are broken. At this stage, a query like “How can I create a directory?” would retrieve “mkdir creates a new directory file”. Finally, if everything else fails, we go into keywords mode. In this mode, nouns, verbs, adjectives and adverbs are selected in both the query and the data. Then, every word selected in the query is matched against those in the document. The result is displayed according to the number of words in the sentence that match it. Note that this keywords mode is still more powerful than the standard IR approach since (i) we make good use of the part-of-speech of the words to decide what is eligible as a keyword, (ii) we make use of the information obtained by the tokeniser in the formatting of the document (such as names of commands, types of arguments, etc.), and (iii) we also make use of the textual structure of the document (all index terms have to occur in the same sentence in order to be considered).

6. Presenting (possibly ambiguous) results

A problem that our system (as every NLP system) had to confront was that of ambiguities. Sleator and Temperley’s parser does not try to resolve syntactic or semantic ambiguities, and a long sentence may have hundreds, or even thousands, of different parses. ExtrAns tries to resolve (syntactic) ambiguities in two steps. First of all, some hand-crafted rules filter out the most straightforward cases of spurious ambiguities. An example of such a rule is: “A prepositional phrase headed by of can attach only to the immediately preceding noun or noun coordination.” In a second step, we adopt Brill and Resnik’s prepositional phrase disambiguation approach, trained with data extracted from manual pages. With the help of this disambiguator we can use statistical data to resolve some of the prepositional phrase attachment ambiguities, a major source of structural ambiguity.

After these two steps, the number of ambiguities will be reduced but some will normally survive, partly because there are sources of ambiguities which cannot be treated with Brill and Resnik’s algorithm. If a sentence has several irreducible interpretations, ExtrAns stores all of them in its database. When the user asks a query, the same sentence may therefore be retrieved several times, via different proof paths. The different proofs may result in the highlighting of different words in the same sentence. ExtrAns handles this mismatch of highlighted words by superimposing all of the highlights of a given sentence, using a graded colouring scheme in such a way that those parts which are retrieved several times are highlighted with a brighter colour than others. For example, consider the string “create the destination directory” in the first hit in figure 1 (“install.1/DESCRIPTION/1”). This string is part of all interpretations of the (ambiguous) sentence in “install.1/DESCRIPTION/1” and was thus used for all the proofs of the user query. As a consequence, it is highlighted with highest intensity in the answer window. This means that, in formal terms, we interpret unambiguity as relevance. Unconventional as this may be, it seems a very helpful concept in the face of unreducible ambiguities.

In addition, it is possible to access the complete manual page containing the sentence by clicking on the manual page name at the left of each sentence. The manual page will show the same multi-coloured selective highlighting, thus enabling the user to spot the relevant sentence at once and to determine even better, by inspecting the context, whether the sentence contains in fact an answer to the question. This way of presenting search results makes even multiple ambiguities fairly unobtrusive.

7. Conclusions and further research

Comparison with existing approaches. We have built a small prototype that currently processes 30 UNIX manual pages and allows the user to ask questions in plain English. Since the amount of data is still small, a statistically meaningful evaluation is out of the question. Moreover, it is unclear how we should compare the performance of our system with that of standard IR systems. The standard measures of recall and precision for those systems are based on experts’ judgement concerning the relevance of entire documents whereas, in ExtrAns, we would have to determine the relevance of individual phrases. However, in an informal manner we can compare our approach and the standard IR approach by telling ExtrAns to go into keywords mode from the very beginning. It would then regularly find a considerable number of passages which are far from relevant to the query. For example, the query used in figure 1, “How can I create a directory?”, would now find (in addition to all the relevant passages) sentences such as “In creates an additional directory entry, called a link, to a file or directory,” (which is not about the creation of directories) as well as the equally irrelevant “A hard link is a standard directory entry just like the one made when the file was created.” Ignoring the syntactic, and hence semantic, relationships between the individual words resulted, predictably, in a considerable loss in precision. Since even our keywords mode is far more restrictive than the standard IR search model (see above), any standard IR system is bound to show considerably lower precision than our AE approach.

In sum, we hope to have shown that the concept of answer extraction is very useful, and that it requires a rela-
tively limited amount of language processing. We think we could also show that it is surprisingly easy for users to cope with ambiguities in documents if they are fused, graded, and presented in context.

Features to improve. For the system to be truly useful we must clearly increase the number of manual pages which can be analysed. We must then refine the system’s treatment of ungrammatical text. Currently, it converts words which cannot be analysed into isolated keywords, and we should refine this method so that we can process individual phrases if a sentence cannot be parsed in its entirety. Also, in some sentences, the number of unreducible syntactic analyses still is overwhelming, and it will be necessary to refine our methods to disambiguate and filter out the implausible meanings, possibly through the use of semantic information. We must also add some capability of resolving pronouns and anaphoric full noun phrases. Finally, we must extend the current inferencing techniques to increase recall. We currently integrate synonymy, hyponymy and conjunction distributivity, among others, but we still need to add more inferences and extend the thesaurus.

References

