UZH-Logo

Maintenance Infos

Mining of functional relations between genes and proteins over biomedical scientific literature using a deep-linguistic approach


Rinaldi, F; Schneider, G; Kaljurand, K; Hess, M; Andronis, C; Konstanti, O; Persidis, A (2007). Mining of functional relations between genes and proteins over biomedical scientific literature using a deep-linguistic approach. Artificial Intelligence in Medicine, 39(2):127-136.

Abstract

Objective: The amount of new discoveries (as published in the scientific literature) in the biomedical area is growing at an exponential rate. This growth makes it very difficult to filter the most relevant results, and thus the extraction of the core information becomes very expensive. Therefore, there is a growing interest in text processing approaches that can deliver selected information from scientific publications, which can limit the amount of human intervention normally needed to gather those results. Materials and methods: This paper presents and evaluates an approach aimed at automating the process of extracting functional relations (e.g. interactions between genes and proteins) from scientific literature in the biomedical domain. The approach, using a novel dependency-based parser, is based on a complete syntactic analysis of the corpus. Results: We have implemented a state-of-the-art text mining system for biomedical literature, based on a deep-linguistic, full-parsing approach. The results are validated on two different corpora: the manually annotated genomics information access (GENIA) corpus and the automatically annotated arabidopsis thaliana circadian rhythms (ATCR) corpus. Conclusion: We show how a deep-linguistic approach (contrary to common belief) can be used in a real world text mining application, offering high-precision relation extraction, while at the same time retaining a sufficient recall.

Objective: The amount of new discoveries (as published in the scientific literature) in the biomedical area is growing at an exponential rate. This growth makes it very difficult to filter the most relevant results, and thus the extraction of the core information becomes very expensive. Therefore, there is a growing interest in text processing approaches that can deliver selected information from scientific publications, which can limit the amount of human intervention normally needed to gather those results. Materials and methods: This paper presents and evaluates an approach aimed at automating the process of extracting functional relations (e.g. interactions between genes and proteins) from scientific literature in the biomedical domain. The approach, using a novel dependency-based parser, is based on a complete syntactic analysis of the corpus. Results: We have implemented a state-of-the-art text mining system for biomedical literature, based on a deep-linguistic, full-parsing approach. The results are validated on two different corpora: the manually annotated genomics information access (GENIA) corpus and the automatically annotated arabidopsis thaliana circadian rhythms (ATCR) corpus. Conclusion: We show how a deep-linguistic approach (contrary to common belief) can be used in a real world text mining application, offering high-precision relation extraction, while at the same time retaining a sufficient recall.

Citations

34 citations in Web of Science®
44 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 10 Aug 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Computational Linguistics
Dewey Decimal Classification:000 Computer science, knowledge & systems
410 Linguistics
Language:English
Date:February 2007
Deposited On:10 Aug 2009 11:47
Last Modified:05 Apr 2016 13:15
Publisher:Elsevier
ISSN:0933-3657
Publisher DOI:https://doi.org/10.1016/j.artmed.2006.08.005
Permanent URL: https://doi.org/10.5167/uzh-19138

Download

[img]
Filetype: PDF - Registered users only
Size: 518kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations