UZH-Logo

Severe hypomyelination of the murine CNS in the absence of myelin-associated glycoprotein and fyn tyrosine kinase.


Biffiger, K; Bartsch, S; Montag, D; Aguzzi, A; Schachner, M; Bartsch, U (2000). Severe hypomyelination of the murine CNS in the absence of myelin-associated glycoprotein and fyn tyrosine kinase. Journal of Neuroscience, 20(19):7430-7437.

Abstract

The analysis of mice deficient in the myelin-associated glycoprotein (MAG) or Fyn, a nonreceptor-type tyrosine kinase proposed to act as a signaling molecule downstream of MAG, has revealed that both molecules are involved in the initiation of myelination. To obtain more insights into the role of the MAG-Fyn signaling pathway during initiation of myelination and formation of morphologically intact myelin sheaths, we have analyzed optic nerves of MAG-, Fyn- and MAG/Fyn-deficient mice. We observed a slight hypomyelination in optic nerves of MAG mutants that was significantly increased in Fyn mutants and massive in MAG/Fyn double mutants. The severe morphological phenotype of MAG/Fyn mutants, accompanied by behavioral deficits, substantiates the importance of both molecules for the initiation of myelination. The different severity of the phenotype of different genotypes indicates that the MAG-Fyn signaling pathway is complex and suggests the presence of compensatory mechanisms in the single mutants. However, data are also compatible with the possibility that MAG and Fyn act independently to initiate myelination. Hypomyelination of optic nerves was not related to a loss of oligodendrocytes, indicating that the phenotype results from impaired interactions between oligodendrocyte processes and axons and/or impaired morphological maturation of oligodendrocytes. Finally, we demonstrate that Fyn, unlike MAG, is not involved in the formation of ultrastructurally intact myelin sheaths.

The analysis of mice deficient in the myelin-associated glycoprotein (MAG) or Fyn, a nonreceptor-type tyrosine kinase proposed to act as a signaling molecule downstream of MAG, has revealed that both molecules are involved in the initiation of myelination. To obtain more insights into the role of the MAG-Fyn signaling pathway during initiation of myelination and formation of morphologically intact myelin sheaths, we have analyzed optic nerves of MAG-, Fyn- and MAG/Fyn-deficient mice. We observed a slight hypomyelination in optic nerves of MAG mutants that was significantly increased in Fyn mutants and massive in MAG/Fyn double mutants. The severe morphological phenotype of MAG/Fyn mutants, accompanied by behavioral deficits, substantiates the importance of both molecules for the initiation of myelination. The different severity of the phenotype of different genotypes indicates that the MAG-Fyn signaling pathway is complex and suggests the presence of compensatory mechanisms in the single mutants. However, data are also compatible with the possibility that MAG and Fyn act independently to initiate myelination. Hypomyelination of optic nerves was not related to a loss of oligodendrocytes, indicating that the phenotype results from impaired interactions between oligodendrocyte processes and axons and/or impaired morphological maturation of oligodendrocytes. Finally, we demonstrate that Fyn, unlike MAG, is not involved in the formation of ultrastructurally intact myelin sheaths.

Citations

53 citations in Web of Science®
55 citations in Scopus®
Google Scholar™

Downloads

516 downloads since deposited on 11 Feb 2008
115 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:1 October 2000
Deposited On:11 Feb 2008 12:26
Last Modified:05 Apr 2016 12:21
Publisher:Society for Neuroscience
ISSN:0270-6474
Related URLs:http://www.jneurosci.org/cgi/content/full/20/19/7430
PubMed ID:11007902
Permanent URL: http://doi.org/10.5167/uzh-1918

Download

[img]
Preview
Filetype: PDF
Size: 862kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations