Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-1922

Chrast, R; Scott, H S; Madani, R; Huber, L; Wolfer, D P; Prinz, M; Aguzzi, A; Lipp, H P; Antonarakis, S E (2000). Mice trisomic for a bacterial artificial chromosome with the single-minded 2 gene (Sim2) show phenotypes similar to some of those present in the partial trisomy 16 mouse models of Down syndrome. Human Molecular Genetics, 9(12):1853-1864.

[img]
Preview
PDF
1210Kb

Abstract

The Drosophila single-minded (sim) transcription factor, is a master regulator of fruitfly neurogenesis. Recently, we have cloned and mapped a human homolog of sim, SIM2, to chromosome 21 in the so-called 'Down syndrome chromosomal region'. Three copies of SIM2 may contribute to some Down syndrome (DS) phenotypes because of the mapping position function as transcriptional repressor, temporal and spatial expression pattern of mouse Sim2, and the potentially analogous role of human SIM2 to that of Drosophila sim during neurogenesis. In order to validate this hypothesis in vivo, we have created the first bacterial artificial chromosome transgenic mice overexpressing a gene possibly involved in DS with only one or two additional copies of mouse Sim2. The transgene was shown to be expressed in the same spatial pattern as the endogenous gene. The mice develop normally, are fertile and do not show detectable histopathological abnormalities. However, detailed analysis of their behavior revealed anxiety-related/reduced exploratory behaviour and sensitivity to pain, phenotypes similar to those also present in other partial trisomy 16 mouse models of DS. Our data therefore suggest that overexpression of SIM2 contributes to some of the complex DS phenotypes.

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
DDC:570 Life sciences; biology
610 Medicine & health
Language:English
Date:22 July 2000
Deposited On:11 Feb 2008 13:26
Last Modified:03 Dec 2013 16:24
Publisher:Oxford University Press
ISSN:0964-6906
Publisher DOI:10.1093/hmg/9.12.1853
Related URLs:http://hmg.oxfordjournals.org/cgi/content/abstract/9/12/1853
PubMed ID:10915774
Citations:Web of Science®. Times Cited: 74
Google Scholar™

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page