Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-19315

Garrett-Roe, S; Hamm, P (2009). What can we learn from three-dimensional infrared spectroscopy? Accounts of Chemical Research, 42(9):1412-1422.

[img] PDF - Registered users only
View at publisher


The low-frequency part of the vibrational spectrum of a liquid is dominated by intermolecular degrees of freedom. Hence, it reports on the motion of solvent molecules with respect to each other rather than on the intramolecular details of individual molecules. In hydrogen-bonded liquids, in particular water, a detailed understanding of the low-frequency spectrum is enormously complicated because of the complex hydrogen-bond network, which constantly rearranges on an ultrafast femtosecond to picosecond time scale. Many of the peculiar properties of water have their origin in these processes. Conventional far-infrared (far-IR) or Raman spectroscopy, as well as two-dimensional IR (2D-IR) spectroscopy, are all linear with respect to the intermolecular (solvent) degrees of freedom. These spectroscopies tell us much about the density of states in the low-frequency range but little about the dynamics of the hydrogen-bond making and breaking.

In this Account, we propose three-dimensional IR (3D-IR) spectroscopy as a novel tool that is nonlinear with respect to these low-frequency degrees of freedom; hence, it may provide much more detailed insights into intermolecular dynamics. The first experimental realizations of 3D-IR spectroscopy have been demonstrated in the literature; the information it affords is similar to that of 2D-Raman spectroscopy. Three-dimensional IR spectroscopy will, for the first time, reveal whether the low-frequency part of the vibrational spectrum of liquids has to be considered mostly homogeneously or inhomogeneously broadened. Alternately, we may find that either of these classifications is completely wrong because the normal mode picture fails when thermal energy is of the same order of magnitude as the ruggedness of the intramolecular potential energy surface.

We briefly introduce the theoretical background of 3D-IR spectroscopy and discuss two of its most promising applications: (a) the more thorough characterization of non-Gaussian stochastic processes such as the hydrogen-bond dynamics of water and (b) non-Markovian ultrafast exchange processes. In the ultrafast regime, many of the otherwise valid simplifying assumptions of nonequilibrium statistical mechanics (for example, linear response and Markovian dynamics) are likely to fail; 3D-IR spectroscopy will allow us for the first time to experimentally explore their range of validity.




2 downloads since deposited on 24 Jun 2009
0 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Deposited On:24 Jun 2009 14:44
Last Modified:05 Apr 2016 13:16
Publisher:American Chemical Society
Funders:Swiss National Science Foundation (SNF)
Additional Information:Acc. Chem. Res., Article ASAP DOI: 10.1021/ar900028k Publication Date (Web): May 18, 2009 Copyright © 2009 American Chemical Society
Publisher DOI:10.1021/ar900028k

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page