Selective alterations in GABAA receptor subtypes in human temporal lobe epilepsy

Loup, F; Wieser, H G; Yonekawa, Y; Aguzzi, A; Fritschy, J M

Postprint available at: http://www.zora.unizh.ch

Posted at the Zurich Open Repository and Archive, University of Zurich.
http://www.zora.unizh.ch

Selective alterations in GABAA receptor subtypes in human temporal lobe epilepsy

Abstract

Temporal lobe epilepsy (TLE) is associated with impaired inhibitory neurotransmission. Studies in animal models suggest that GABA(A) receptor dysfunction contributes to epileptogenesis. To understand the mechanisms underlying TLE in humans, it is fundamental to determine whether and how GABA(A) receptor subtypes are altered. Furthermore, identifying novel receptor targets is a prerequisite for developing selective antiepileptic drugs. We have therefore analyzed subunit composition and distribution of the three major GABA(A) receptor subtypes immunohistochemically with subunit-specific antibodies (alpha1, alpha2, alpha3, beta2,3, and gamma2) in surgical specimens from TLE patients with hippocampal sclerosis (n = 16). Profound alterations in GABA(A) receptor subtype expression were observed when compared with control hippocampi (n = 10). Although decreased GABA(A) receptor subunit staining, reflecting cell loss, was observed in CA1, CA3, and hilus, the distinct neuron-specific expression pattern of the alpha-subunit variants observed in controls was markedly changed in surviving neurons. In granule cells, prominent upregulation mainly of the alpha2-subunit was seen on somata and apical dendrites with reduced labeling on basal dendrites. In CA2, differential rearrangement of all three alpha-subunits occurred. Moreover, there was layer-specific loss of alpha1-subunit-immunoreactive interneurons in hippocampus proper, whereas surviving interneurons exhibited extensive changes in dendritic morphology. Throughout, expression patterns of beta2,3- and gamma2-subunits largely followed those of alpha-subunit variants. These results demonstrate unique subtype-specific expression of GABA(A) receptors in human hippocampus. The significant reorganization of distinct receptor subtypes in surviving hippocampal neurons of TLE patients with hippocampal sclerosis underlines the potential for synaptic plasticity in the human GABA system.
Selective Alterations in GABA_A Receptor Subtypes in Human Temporal Lobe Epilepsy

Fabienne Loup,¹ Heinz-Gregor Wieser,² Yasuhiro Yonekawa,³ Adriano Aguzzi,⁴ and Jean-Marc Fritschy¹

¹Institute of Pharmacology, University of Zurich, and Departments of ²Neurology, ³Neurosurgery, and ⁴Neuropathology, University Hospital Zurich, 8057 Zurich, Switzerland

Temporal lobe epilepsy (TLE) is associated with impaired inhibitory neurotransmission. Studies in animal models suggest that GABA_A receptor dysfunction contributes to epileptogenesis. To understand the mechanisms underlying TLE in humans, it is fundamental to determine whether and how GABA_A receptor subtypes are altered. Furthermore, identifying novel receptor targets is a prerequisite for developing selective antiepileptic drugs. We have therefore analyzed subunit composition and targets is a prerequisite for developing selective antiepileptic drugs. We have therefore analyzed subunit composition and distribution of the three major GABA_A receptor subtypes immunohistochemically with subunit-specific antibodies (α1, α2, α3, β2,3, and γ2) in surgical specimens from TLE patients with hippocampal sclerosis (n = 16). Profound alterations in GABA_A receptor subtype expression were observed when compared with control hippocampi (n = 10). Although decreased GABA_A receptor subunit staining, reflecting cell loss, was observed in CA1, CA3, and hilus, the distinct neuron-specific expression pattern of the α-subunit variants observed in controls was markedly changed in surviving neurons. In granule cells, prominent upregulation mainly of the α2-subunit was seen on somata and apical dendrites with reduced labeling on basal dendrites. In CA2, differential rearrangement of all three α-subunits occurred. Moreover, there was layer-specific loss of α1-subunit-immunoreactive interneurons in hippocampus proper, whereas surviving interneurons exhibited extensive changes in dendritic morphology. Throughout, expression patterns of β2,3- and γ2-subunits largely followed those of α-subunit variants. These results demonstrate unique subtype-specific expression of GABA_A receptors in human hippocampus. The significant reorganization of distinct receptor subtypes in surviving hippocampal neurons of TLE patients with hippocampal sclerosis underlines the potential for synaptic plasticity in the human GABA system.

Key words: human epilepsy; GABA_A receptor; dentate gyrus; hilus; CA2; pyramidal cells; granule cells; interneurons

Fast synaptic inhibition in the vertebrate CNS is mediated primarily by the neurotransmitter GABA interacting with the GABA_A class of receptors. Impaired GABA transmission can lead to neuronal hyperexcitability, a condition associated with epileptogenesis. Furthermore, antiepileptic agents that enhance GABA_A receptor function are effective in treating seizures (Olsen et al., 1999).

Temporal lobe epilepsy (TLE) is the most common adult seizure disorder and, when associated with hippocampal sclerosis (HS), is the most refractory to pharmacotherapy (Engel, 1998; Semah et al., 1998). Evidence from human studies suggests that postsynaptic GABA_A receptors contribute to the pathophysiology of TLE with HS. Thus, alterations in GABA_A receptor function and in their allosteric modulation by ligands of the benzodiazepine-binding site were documented in hippocampal neurons from HS patients (Franck et al., 1995; Williamson et al., 1995, 1999; Isokawa, 1996; Shumate et al., 1998; Brooks-Kayal et al., 1999). Furthermore, in vivo imaging and autoradiographic studies demonstrated a decrease in central benzodiazepine receptor binding primarily attributed to extensive cell death in the sclerotic hippocampus of TLE patients (Olsen et al., 1992; Burdette et al., 1995; Koepp et al., 1996) and additional reduction of receptor density per remaining neuron in CA1 (Johnson et al., 1992; Hand et al., 1997; Koepp et al., 1998).

The recognition of multiple GABA_A receptor subtypes and their differential expression in distinct neuronal populations (Fritschi and Möhler, 1995; McKerrnan and Whiting, 1996; Sperk et al., 1997) permits a target-oriented analysis of GABA_A receptor dysfunction in human TLE. GABA_A receptor heterogeneity results from the combinatorial assembly of a multitude of subunit variants encoded by at least 20 genes (α1–6, β1–4, γ1–3, δ, ε, π, θ, and ρ1–3) (Mohler et al., 1996; Barnard et al., 1998; Whiting et al., 1999). If expression of specific GABA_A receptor subtypes is altered in TLE, their identification would facilitate the development of more selective antiepileptic drugs and ligands for in vivo imaging. Current approaches, however, have not provided the degree of spatial resolution and specificity required to characterize individual receptor subtypes and their subunit-specific alterations in human brain. Although recent studies in animal models of TLE reported changes in the number and subunit composition of GABA_A receptors in hippocampal neurons (Schwarzer et al., 1997; Brooks-Kayal et al., 1998; Nusser et al., 1998; Bouilleret et al., 2000), the validity of these data as pertains to human TLE remains to be established.

In the present study, we investigated alterations in subunit architecture and localization of GABA_A receptor subtypes in hippocampi resected from TLE patients with HS and compared these with control tissue obtained at autopsy and with specimens from TLE patients without HS. A protocol based on microwave irradiation and tyramide signal amplification was used to visualize the major GABA_A receptor subunits α1, α2, α3, β2,3, and γ2 in human brain tissue using subunit-specific antisera (Loup et al., 1998). Parts of this paper have been published previously as abstracts (Loup et al., 1997, 1999).

MATERIALS AND METHODS

Patient selection. Twenty-one patients (mean age 34.9 ± 2.5 years; range, 15–56 years) undergoing surgery for medically intractable TLE were included in this study. All procedures were performed with consent of the patients and were approved by the Ethics Committee of the University Hospital Zurich in accordance with the Helsinki Declaration of 1975. Presurgical assessment consisted of detailed history and neurological examination, semi-invasive EEG monitoring with foramen ovale electrodes, and neuropsychological testing. Neuroradiological studies included for all cases high-resolution magnetic resonance imaging (MRI) with special protocols to visualize the hippocampal formation and positron emission tomography (PET) with fluorodeoxyglucose. Intraoperative electrocorticography was performed in all subjects to further characterize the
epileptogenic zone to be resected. Based on clinical, EEG, neuroimaging, and neuropathological data, patients were classified into those with HS \((n = 16) \); mean age, 36.9 ± 2.7 years; range, 17–56 years) and those without HS \((n = 5) \); mean age, 30.5 ± 2.1 years; range, 24–60 years \(\) (Wieser et al., 1993). Patients from the HS group underwent selective amygdalohippocampectomy consisting in resection of amygdala, hippocampal formation, and parahippocampal gyrus \(\) (Wieser and Yasargil, 1982). The included patients had a tumor \(\) (case 1) or a tumor \(\) (case 2) identified by neuroimaging in an extrahippocampal location and confirmed histopathologically, and in one case no lesion was apparent. In these patients, the surgical procedure consisted of amygdalohippocampectomy alone or with resection of the epileptogenic zone of mesial temporal lobe. For comparison, tissue from hippocampal \(\) (mean age, 54.2 years; range, 40–73 years) with no history of neurological or psychiatric disorder were collected at autopsy between 8 and 16 hr after death \(\) (mean postmortem interval, 11.2 ± 1.3 hr). Hippocampal tissue was also obtained from a 56-yr-old patient \(\) (case 3) who died with a postmortem interval of 15 hr, who had died from multiorgan failure.

Tissue preparation. Hippocampal specimens obtained at surgery or autopsy were cut into 7- to 12-mm-thick blocks transversely to the long axis. In surgical \(\), the rostrocaudal extent of the hippocampus available to be analyzed for the GABA \(_{\text{A}}\) receptor subunits was within a 12.5 × 12.5 mm oculor grid consisting of 10 × 10 squares at a magnification of 400 and 1000×, respectively. Four to six measurements per section were made on microscope images of each specimen, which were screened and image-processing software was used to enable random sampling. No specific staining was seen in detailed sections for any available to be analyzed for the GABA \(_{\text{A}}\) receptor subunits were within a 12.5 × 12.5 mm oculor grid consisting of 10 × 10 squares at a magnification of 400 and 1000×, respectively. Four to six measurements per section were made on microscope images of each specimen, which were screened and image-processing software was used to enable random sampling. No specific staining was seen in detailed sections for any.
epilepsy, defined as the interval between onset of habitual seizures and surgical treatment: 28 ± 2.7 years, range, 12–44 years vs 10.4 ± 4.4 years, range, 2–26 years; age at seizure onset: 8.9 ± 1.6 years, range, 1–22 years vs 17.8 ± 4.8 years, range, 9–30 years). A history of an initial precipitating injury (Mathern et al., 1995a), was documented in 11 patients in the HS group and none in the non-HS group. These events included febrile convulsions (n = 6), infantile meningitis/encephalitis (n = 3), and neonatal anoxia/ischemia (n = 2). Preoperatively HS and non-HS patients were on similar anti-epileptic medication. Seizure control was assessed in all surgical cases (mean follow-up period of 24 ± 1.1 months). Postoperatively, 12 patients in the HS group (75%) were seizure-free (class 1, as classified after Engel, 1987), two had rare seizures (class 2), and two patients had worthwhile improvement (class 3). In the non-HS group, four patients were seizure-free, and one patient was unchanged. The high success rate in achieving seizure control indicates that the epileptogenic focus was successfully removed with selective amygdalohippocampectomy.

Comparison of patient categories
The distribution of the GABA_A receptor subunits α1, α2, α3, β2,3, and γ2 was analyzed in hippocampal specimens from TLE patients with HS (n = 16). For comparison, two control groups were used and defined as hippocampal tissue obtained at autopsy from patients with no evidence of neurological disease (n = 5) and tissue surgically removed from patients with TLE, but without HS (n = 5). Both were indistinguishable on the basis of morphological criteria except for at most mild neuronal loss in TLE without HS, as reported in previous studies (Babb et al., 1984; Kim et al., 1990). More importantly, the staining pattern for the GABA_A receptor subunits under study was largely similar in the two groups. This is illustrated for the α1-subunit in Figure 1 where the postmortem specimen from a 40-yr-old man with no known neurological disorder (top left panel) was compared with the surgical specimen from a 45-yr-old man with TLE secondary to a benign extrahippocampal tumor and without HS (bottom left panel). The origin of control specimens, whether from autopsy or surgery, is indicated in parentheses for each subsequent figure.

To test whether autopsy specimens represent valid controls for surgical specimens, hippocampal tissue obtained at autopsy from a patient with TLE and HS was compared with tissue obtained at surgery from patients suffering from TLE with HS, as shown for GABA_A receptor α1-subunit staining (Fig. 1). Although the autopsy specimen was processed after a 15 hr postmortem interval (top right panel) and the surgical specimen immediately after re-
section (bottom right panel), staining patterns were comparable, confirming that GABA_A receptor subunit antigens are stable for several hours after death (Loup et al., 1998).

Regional distribution of GABA_A receptor subunits in controls and TLE with HS

To provide an overview, GABA_A receptor subunits α1, α2, α3, β2,3, and γ2 in the human hippocampus were visualized at low-power magnification in color-coded video images (Fig. 2). Differences in staining intensity for each subunit were assessed using a normalized scale. In rodent brain, these subunits account for at least 80% of all GABA_A receptors (for review, see McKernan and Whiting, 1996; Möhler et al., 1996). Whereas the β2,3- and γ2-subunits are part of most GABA_A receptor subtypes, the α-subunit variants represent largely distinct subtypes with a specific pharmacological profile and distribution pattern. A similar organization in subunit architecture was observed in normal human hippocampus. In control specimens (Fig. 2, first column), the β2,3- and γ2-subunits exhibited a comparable labeling pattern, with staining intensity being highest in the dentate molecular layer and CA1, and moderate in CA2, CA3, and hilus. Autoradiographic studies with benzodiazepine radioligands have described a similar distribution of GABA_A receptors, confirming the ubiquitous nature of these two subunits (Faull and Villiger, 1988; Houser et al., 1988; Hand et al., 1997). In contrast, the α-subunit variants showed distinct patterns of immunoreactivity (Fig. 2, third column). For the α1-subunit, the density of immunolabeling was highest in the dentate molecular layer and CA1. Staining was moderate in CA2 and hilus. At this level of magnification, CA3 appeared nearly devoid of α1-subunit immunoreactivity. These findings are in accordance with a previous study in normal human tissue (Houser et al., 1988). Immunoreactivity for the α2-subunit was most abundant in the dentate molecular layer. Labeling was also prominent in CA2, CA3, and hilus, and moderate in CA1, a pattern similar to that reported in rodents (Fritschy and Möhler, 1995). Finally, specific α3-subunit immunoreactivity was consistently found to be highest in CA1, moderate to low in CA2, and virtually absent in CA3 and hilus, whereas in the dentate gyrus immunolabeling varied among specimens (see Fig. 13E,F). Figure 2 illustrates a case with low α3-subunit immunoreactivity in the dentate molecular layer.

In TLE with HS specimens (Fig. 2, second and fourth columns), the characteristic pattern of gliosis and regional neuronal loss was revealed with Nissl staining. Cell death was most extensive in CA1 and more moderate in CA3 and dentate hilus, with areas of relative sparing in CA2 and dentate gyrus. Two main alterations in GABA_A receptor subunit expression were observed at the regional level. First, areas of prominent cell loss, such as CA1, CA3, and dentate hilus showed marked reduction in immunoreactivity for all subunits. These changes closely paralleled the pattern of neuronal loss occurring in HS. Second, areas of relative cell loss, such as CA2 and the dentate gyrus, exhibited subunit-specific, increased or decreased intensity of staining in comparison to controls, suggesting corresponding changes in the number of receptors in surviving principal cells. Upregulation was most prominent for the α2-subunit. Differences in staining intensity between HS specimens and the two control groups were assessed by quantitative densitometry in the CA2 pyramidal cell layer and dentate layers (Fig. 3, see below). In the following, results will be described in subregions of the hippocampus in controls and TLE specimens with HS. Unless
dure, large and intensely stained multipolar cells were seen with their dendrites passing through the strata pyramidalis and radiatum before entering the stratum lacunosum-moleculare (Fig. 5A). Most conspicuous was the presence of small round interneurons, which were especially numerous in stratum lacunosum-moleculare (Fig. 4D). Their radially oriented dendrites, forming a fine network superimposed on diffuse neuropil, conferred a stellate-like aspect to these cells.

TLE specimens with HS

In this series, three of 16 specimens showed segmental conservation of the CA1 pyramidal cell layer (Figs. 2, 4B), in which atrophy was partial, and the staining pattern in the preserved area was similar to that of control specimens. In the other 13 specimens, there was marked atrophy of the CA1 area (Fig. 4C, α2-subunit, E, α1-subunit). Whereas strata pyramidalis and radiatum were reduced to a thin band virtually devoid of pyramidal cells, stratum lacunosum-moleculare largely retained its original size. The few surviving pyramidal cells were faintly immunoreactive for GABA_A receptors (data not shown).

In the absence of immunoreactivity in the dendritic fields of the degenerated pyramidal cells, the interneurons expressing the α1-subunit were revealed in all specimens (Figs. 4E, 5B, C). In stratum oriens, fusiform, round, and multipolar interneurons could be observed within a dense network of dendrites (Fig. 4E). In strata pyramidalis and radiatum, several types of nonpyramidal cells could be distinguished with somata that were small and round, medium-sized, or large and multipolar. The latter cell type frequently displayed irregular soma conformations and dendrites that appeared tangled, nodulated, variable in their diameters, and increased in number (Fig. 5B, C). Finally, stratum lacunosum-moleculare contained numerous small interneurons whose dendrites formed a more intricate network than that observed in controls. Occasional round cells of moderate size were also seen (Fig. 4E).

Because of prominent neuropil labeling in control tissue, which largely prevented counts of α1-subunit-positive interneurons in the different strata, it was not possible to evaluate the extent, if any, of interneuron loss that had occurred in HS specimens. As illustrated in Figure 4E, however, interneurons present in strata pyramidalis and radiatum were consistently less numerous than in stratum lacunosum-moleculare in the CA1 area.

GABA_A receptor subtypes in the CA2 area

Control specimens

A subunit-specific pattern of staining was observed in the CA2 area. The α2-subunit exhibited a laminar distribution comparable to that in CA1, with intense staining in stratum pyramidalis and lightest staining in stratum radiatum (Figs. 2, 6C). α3-Subunit immunoreactivity was very different, in that it mainly outlined the cell bodies of a few pyramidal neurons in the superficial aspect of the stratum pyramidalis. In stratum radiatum, their lightly labeled apical dendrites formed delicate processes that ran parallel to one another and entered the stratum lacunosum-moleculare where staining was more diffuse (Fig. 6E). A laminar pattern was also seen for the α1-subunit (Figs. 1, 2, 7A).

In addition, as in CA1, α1-subunit immunoreactivity revealed a population of interneurons that were readily visible because of the low to moderate α1-subunit-positive neuropil in CA2. In stratum oriens, strong immunolabeling of fusiform and large multipolar somata was detected. Their dendrites mostly ran parallel to the alveus and frequently formed a dense fiber network. In stratum pyramidalis, three types of nonpyramidal neurons were identified (Fig. 7A,D): (1) large, intensely stained multipolar interneurons with long apical and basal dendrites, (2) medium-sized, ovoid cells with apical dendrites that could be followed into stratum radiatum, and (3) small round interneurons. In stratum radiatum, a few round and medium-sized α1-subunit-positive interneurons were seen. In addition, strongly stained individual, or fascicles of, dendritic processes passed through stratum radiatum and entered

GABA_A receptor subtypes in the CA2 area

Control specimens

A subunit-specific pattern of staining was observed in the CA2 area. The α2-subunit exhibited a laminar distribution comparable to that in CA1, with intense staining in stratum pyramidalis and lightest staining in stratum radiatum (Figs. 2, 6C). α3-Subunit immunoreactivity was very different, in that it mainly outlined the cell bodies of a few pyramidal neurons in the superficial aspect of the stratum pyramidalis. In stratum radiatum, their lightly labeled apical dendrites formed delicate processes that ran parallel to one another and entered the stratum lacunosum-moleculare where staining was more diffuse (Fig. 6E). A laminar pattern was also seen for the α1-subunit (Figs. 1, 2, 7A).

In addition, as in CA1, α1-subunit immunoreactivity revealed a population of interneurons that were readily visible because of the low to moderate α1-subunit-positive neuropil in CA2. In stratum oriens, strong immunolabeling of fusiform and large multipolar somata was detected. Their dendrites mostly ran parallel to the alveus and frequently formed a dense fiber network. In stratum pyramidalis, three types of nonpyramidal neurons were identified (Fig. 7A,D): (1) large, intensely stained multipolar interneurons with long apical and basal dendrites, (2) medium-sized, ovoid cells with apical dendrites that could be followed into stratum radiatum, and (3) small round interneurons. In stratum radiatum, a few round and medium-sized α1-subunit-positive interneurons were seen. In addition, strongly stained individual, or fascicles of, dendritic processes passed through stratum radiatum and entered...
Figure 4. Subunit-specific GABA_A receptor immunoreactivity in the CA1 area of controls (A, D, autopsy) as compared to TLE with HS (B, C, E). A, D, Control sections exhibit a laminar staining pattern for the α2- and α1-subunits, respectively. Whereas immunoreactivity for both subunits is diffusely distributed in neuropil, α1-subunit immunoreactivity is also present in numerous nonpyramidal neurons (D, arrows). B, C, Sections from two HS specimens stained for the α2-subunit, where in B the partly conserved CA1 pyramidal cell layer shows α2-subunit immunoreactivity, and in C there is almost complete pyramidal cell loss associated with severe atrophy of the CA1 area. E, Section from an HS specimen stained for the α1-subunit, showing the loss of neuropil staining and the layer-specific distribution of nonpyramidal neurons. Whereas small interneurons are conserved in stratum lacunosum-moleculare and larger interneurons in stratum oriens, few interneurons are visible in strata pyramidale and radiatum. Note the increase in GABA_A receptor α2- and α1-subunit expression in dentate molecular and granule cell layers in HS specimens. al, Alveus; gcl, dentate granule cell layer; H, dentate hilus; hf, hippocampal fissure; ml, dentate molecular layer; slm, stratum lacunosum-moleculare; so, stratum oriens; sp, stratum pyramidale; sr, stratum radiatum. Scale bar, 200 μm.
stratum lacunosum-moleculare (Fig. 7A). Stratum lacunosum-moleculare contained a number of small stellate-shaped interneurons with four to eight dendrites forming a delicate network against a lightly stained diffuse neuropil (Fig. 7A,G). At high-power magnification, intense staining was seen to outline their somata, which were frequently deformed in shape and arranged in a disorganized manner. Furthermore, a striking rearrangement of α3-subunit immunoreactivity occurred. Intense immunolabeling adorned individual thickened apical dendrites passing through stratum radiatum, whereas pyramidal cell bodies were virtually unstained (Fig. 6F). Tangentially cut processes could be observed in strata radiatum and lacunosum-moleculare, indicating a change in direction of some apical dendrites along the rostrocaudal axis.

Alterations in α1-subunit immunoreactivity markedly differed in pyramidal versus nonpyramidal cells. Pyramidal cells and dendritic layers displayed decreased and more diffuse staining in comparison to control tissue (Figs. 1, 7B,C). In contrast, extensive layer-specific changes in α1-subunit-positive interneurons were seen for all HS specimens. In strata pyramidale and radiatum, profound loss of the small, round and medium-sized interneurons immunopositive for the α1-subunit was observed (Fig. 7B,C,E), whereas the large multipolar nonpyramidal cells remained for the most part. However, their somata were deformed, and the dendritic arborization was altered (Fig. 7E,F). In contrast, in stratum lacunosum-moleculare the numerous small, round interneurons were preserved and surrounded by a dense dendritic network (Fig. 7B,C,H,I). Furthermore, the fusiform somata of interneurons present at the border between stratum lacunosum-moleculare and the dentate outer molecular layer frequently appeared larger and more irregular than in control tissue, and their dendrites were more prominent.

Quantitative analysis
In addition to neuron counts performed in adjacent Nissl-stained sections (Fig. 3A), differences in staining intensity between the autopsy, non-HS, and HS groups were assessed quantitatively by densitometry for each of the five subunits in the CA2 pyramidal cell layer (Fig. 3C). The following observations were made: (1) HS specimens showed decreased neuron densities when compared to autopsy (p < 0.01), and a similar trend was observed when compared with non-HS cases, whereas the difference between the autopsy and non-HS groups was not significant. (2) There were subunit-specific differences in OD for the α1-subunit variants α1, α2, and α3. Compared with the autopsy group, α2-subunit OD in HS was significantly increased (p < 0.01), whereas OD for the α1- and α3-subunits was significantly decreased (p < 0.05, p < 0.01, respectively). Furthermore, OD for the α1- and α3-subunits was significantly decreased compared to the non-HS group (p < 0.01, p < 0.05, respectively). (3) No significant difference in OD was found for all three α-subunit variants between the autopsy and non-HS groups. (4) As for the ubiquitously present β2,3- and γ2-subunits, no significant difference in OD was found between the three patient categories, which may reflect a change in receptors containing these subunits, whereby a decrease in one subtype of receptor (α1 or α3) is compensated for by an increase in another (α2). These findings suggest that while the total number of receptors may not change significantly in the CA2 area in HS specimens, the relative proportion of α2-subunit-containing GABA_A receptors is markedly increased.

To verify the observed loss or preservation of α1-subunit-positive interneurons in specific strata, counts were performed in 625-μm-wide columns through each stratum in the three patient categories (Fig. 3H). In strata pyramidale and radiatum, the HS group showed decreased numbers of α1-subunit-positive interneurons when compared with the autopsy or non-HS specimens (stratum pyramidale: p < 0.01, p < 0.05, respectively; stratum radiatum: p < 0.05 for both). In contrast, in stratum lacunosum-moleculare, the number of α1-subunit-positive interneurons was not significantly different in the HS group when compared with the autopsy and non-HS specimens. For all strata, no significant difference in interneuron counts was found between the autopsy group and non-HS cases. These statistical data confirm the observation that,
in the HS group, a significant number of α_1-subunit-positive interneurons are lost in strata pyramidale and radiatum while they are preserved in stratum lacunosum-moleculare.

GABA$_A$ receptor subtypes in the CA3 area

Control specimens

In the CA3 area, abundant α_2-subunit immunoreactivity was distributed in a laminar pattern largely similar to that in CA1 and CA2 (Fig. 8A). Neuropil staining was, however, more prominent and less diffuse, except in strata radiatum and lucidum where it was fainter. Immunolabeling for the α_3-subunit was virtually absent (Fig. 2). Likewise, faint or no α_1-subunit staining was observed on the pyramidal cell bodies and dendritic fields (Figs. 2, 9A). In contrast, numerous interneurons expressing this subunit were detected in CA3 (Figs. 8C, E, 9A). The types of nonpyramidal neurons labeled and the distribution pattern in CA3 were largely similar to those in CA2. Their darkly stained dendrites were of variable calibers, usually running toward stratum lacunosum-moleculare and stratum

Figure 6. Subunit-specific alterations in GABA$_A$ receptor immunoreactivity in the CA2 area in controls (A, C, autopsy; E, surgery, TLE without HS) versus TLE with HS (B, D, F). A, B, Nissl-stained sections show moderate pyramidal cell loss in TLE with HS (B) as compared to control hippocampus (A). C, D, α_2-subunit immunoreactivity is increased in surviving pyramidal cells in TLE with HS (D) in comparison to controls (C). E, F, Redistribution of α_3-subunit immunoreactivity. In control hippocampus (E), staining is prominent, outlining the somata of a few pyramidal cells, but weak in their apical dendrites, whereas in TLE with HS (F), thickened apical dendrites show intense immunoreactivity with virtually absent labeling of somata. Note the tangentially cut dendrites reflecting disorganization in orientation (arrows). Abbreviations, see Figure 4. Scale bar, 100 μm.
Figure 7. Layer-specific changes in interneurons stained for the GABA\textsubscript{A} receptor \(\alpha\)-subunit in the CA2 area in five different TLE specimens with HS (B, C, E, F, H, I) versus three different controls (A, G, autopsy; D, surgery, TLE without HS). A–C, Overview; D–F, stratum pyramidale; G–I, stratum lacunosum-moleculare. A, D, G, In controls, several types of nonpyramidal cells are found in strata pyramidale and radiatum, whereas predominantly small interneurons are present in stratum lacunosum-moleculare. B, C, In TLE with HS, the loss of interneurons in strata pyramidale and radiatum is either extensive (B) or virtually complete (C), whereas the small interneurons are conserved in stratum lacunosum-moleculare. E, F, In stratum pyramidale, surviving interneurons are large and display prominent somatic and dendritic alterations, whereas other types of interneurons are no longer apparent. H, I, In stratum lacunosum-moleculare, the small interneurons are preserved, exhibiting an intricate dendritic network. Abbreviations, see Figure 4. Scale bars: A–C, 100 \(\mu\)m; D, E, 50 \(\mu\)m; F–I, 25 \(\mu\)m.
oriens, but also without preferred direction. In addition, interneurons with round to oval cell bodies and fine dendrites were observed in stratum lucidum (Fig. 8C). Conspicuously, interneurons were most numerous at the border between strata pyramidale and lucidum.

TLE specimens with HS

In contrast to the increased GABA\(_A\) receptor \(\alpha_2\)-subunit immunoreactivity described for the CA2 area, staining intensity for this subunit paralleled the degree of pyramidal cell loss in CA3, suggesting that no upregulation occurs in CA3 pyramidal cells (Fig. 8B). Considerable cellular disorganization was apparent in stratum pyramidale, where somata were poorly aligned to each other and exhibited various shapes. In three cases, pyramidal neurons were largely preserved, and staining was similar to control tissue (data not shown). In the other specimens, pyramidal cell loss was moderate to severe and frequently segmental, mostly in the part of CA3 inserting into the dentate hilus (Fig. 8B).
together, because most interneurons were present at the border between both strata and, therefore, could not be attributed unambiguously to one or the other stratum. In strata pyramidale-lacunsum and radius, the HS group showed decreased numbers of α1-subunit-positive interneurons when compared with the autopsy or non-HS specimens (stratum pyramidale-lacunsum: \(p < 0.01, p < 0.05 \), respectively; stratum radius: \(p < 0.01, p < 0.05 \), respectively). In contrast, in stratum lacunsum-molecular, the number of α1-subunit-positive interneurons was not significantly different in the HS group as compared to the autopsy or non-HS specimens. For all strata, no significant difference in interneuron counts was found between the autopsy group and non-HS cases. Thus, statistically significant layer-specific changes in the number of α1-subunit-positive interneurons in HS were present in CA3 as well.

GABA_α receptor subtypes in the dentate hilus

Control specimens

In the dentate hilus, the GABA_α receptor distribution pattern was found to be subunit-specific, as in the hippocampal fields (Fig. 2). The boundary between the hilus and CA3, which often is quite difficult to delineate, was readily recognized as an abrupt transition of α1-subunit staining. Thus, α1-subunit immunoreactivity was moderate in dentate hilus but weak in CA3 (Figs. 2, 9A). In contrast, α2-subunit immunoreactivity was of relatively similar intensity in these two regions (Fig. 9B). Within the dentate hilus, a trilaminar pattern was observed for both the α2- and α1-subunits, as well as the ubiquitously present β2,3- and γ2-subunits (Figs. 4A, 9A, B, 10D, G). First, a layer of prominent diffuse neuropil staining, the subgranular layer, was observed immediately subjacent to the granule cell layer and represented the basal dendrites of granule cells (see “GABA_α receptor subtypes in the dentate gyrus”). Second, a weakly labeled neuron-sparse zone of variable thickness could be identified. Third, a region that comprised the majority of the hilar cells, the polymorphic layer, was situated deep to this zone. In the case of α2-subunit staining, the hilar neurons frequently appeared as white spots at low-power magnification, surrounded by a moderately immunoreactive neuropil (Fig. 9B). In contrast, α1-subunit-positive cell bodies and an associated network of dendrites were intensely stained and surrounded by a moderately to lightly immunoreactive neuropil (Figs. 9A, 10D).

The dentate hilus contains a variety of neuronal cell types with unique morphological features, as reported in rat (Amaral, 1978) and human brain (Braak, 1974; al-Hussain and al-Ali, 1995; Blümcke et al., 1999). In the present study, a large number of hilar cells immunopositive for either the α1-, α2-, or α3-subunit, or both the α1- and α2-subunits were identified, based on the comparison of adjacent sections stained for these subunits. Unexpectedly, previously undescribed pyramidal-shaped neurons immunoreactive for the α2-subunit were observed well within the hilar borders. At higher magnification, discrete staining occurred along the surface of the somata and proximal dendrites, and intense staining revealed darkly stained longitudinal processes 20- to 40-μm-long (Fig. 10A). Using confocal laser-scanning microscopy, these structures were putatively identified as axon initial segments intensely immunoreactive for the α2-subunit (Loup et al., 1998). The most prominent type of hilar cell was the mossy cell, which exhibited strong staining for both the α2- and α1-subunits (Fig. 10D; Loup et al., 1998). The mossy cells were readily distinguished by the presence of characteristic “clusters of spheres” that form the mossy cell thorny excrescences, as described by Amaral (1978). Finally, a number of putative interneuron cell types immunopositive for the α1-subunit were seen, including large multipolar cells. These were localized in the polymorphic and subgranular layers (Fig. 10D, G), and their dendrites traveled for long distances within the hilus or ascended far into the dentate molecular layer. Occasionally, large multipolar interneurons with long dendrites were observed that were stained lightly for the α3-subunit. Otherwise, no specific staining was detected in the polymorphic layer for this subunit.

Quantitative analysis

As in CA2, the numbers of α1-subunit-positive interneurons were quantitatively assessed in distinct strata in the three patient groups (Fig. 3). Strata pyramidale and lacunsum, however, were considered...
Figure 10. Alterations in GABA_a receptor α2- and α1-subunit immunoreactivity in the dentate hilus in TLE with HS (B, C, E, F, H, I) versus controls (A, D, autopsy; G, surgery, TLE without HS). α2-subunit (A–C), α1-subunit (D–I). A. In the control, α2-subunit labeling discretely outlines the somata of pyramidal-shaped neurons (double arrows), whereas intense staining reveals their axon initial segments (large arrowheads). B, C. HS specimens. In B, oval neurons with intense α2-subunit immunoreactivity along the somata resulting in a thickened outline are superimposed on decreased neuropil staining. In C, a surviving medium-sized neuron exhibits α2-subunit staining against the white background because of severe loss of neuropil and cells. D, G. In controls, light neuropil staining is present with several cell types immunoreactive for the α1-subunit, including mossy cells (arrows) and large multipolar interneurons with long dendrites (small arrowheads). E, F. In TLE with HS, neuropil staining is absent, and cell loss has occurred; among the surviving cells, mossy cells (E, arrows) and large interneurons with irregular somata and disorganized tangled dendrites can be recognized. G–I. The altered morphology of large multipolar interneurons located in the subgranular layer is shown at higher magnification in two HS specimens (H, I) as compared to a control specimen (G). In TLE with HS, these interneurons often display changes in soma shape and dendritic arborization including coiling, nodulation, strong variation in calibers, and increased ramification. Scale bar: A–C, I, 25 μm; D–F, 100 μm; G, H, 50 μm.
TLE specimens with HS

In the polymorphic layer, the degree of neuronal loss was variable, with cell loss being mild to moderate in five cases and severe in the other specimens. In cases of lesser cell loss, the neuropil showed decreased a2-subunit immunoreactivity, and round hilar cells could be seen with their somata frequently outlined by intense staining (Fig. 10B). These neurons were unstained for the a1-subunit in adjacent sections (data not shown). In cases of marked cell loss, staining intensity of the neuropil for both the a1- and the a2-subunits was reduced to virtually nondetectable levels. Surviving hilar neurons and their dendritic network thus appeared darkly stained against the pale background and were easily recognized (Fig. 10C,E,F). Preserved cell types included: (1) a1- and a2-subunit-positive mossy cells (Figs. 2, fourth column, 10E). Despite severe loss, mossy cells were the most numerous among the surviving a2-subunit-positive hilar neurons and represented a sizable portion of the surviving a1-positive hilar neurons; (2) a2-subunit-positive oviform cells with dendrites extending over long distances (Fig. 10C); and (3) a1-subunit-positive large multipolar interneurons, with irregular cell bodies and dendrites that appeared tangled, nodulated, and increased in number (Fig. 10E,F,H,I). No specific soma staining was visible for the a3-subunit against the white background.

GABA_A receptor subtypes in the dentate gyrus

Control specimens

Cell type-specific GABA_A receptor subunit distribution was also observed in the dentate granule cells. Staining for the a1-, a2-, b2,3-, and g2-subunits was prominent in the apical dendritic field forming the molecular layer and appeared stronger in the inner as compared to the outer part (Fig. 2, first and third columns). The dentate molecular layer displayed a higher intensity of staining than any other area of the hippocampus (Fig. 2, first and third columns). In the subgranular layer, diffuse moderate labeling was observed in the basal dendritic field (Figs. 4A, 9A,B, 11A,C). In contrast to the marked staining of both apical and basal dendritic trees, labeling barely outlined the somata of the tightly packed granule cells (Figs. 11A,C, 12, 13A,D). Whereas the a1-, a2-, b2,3, and g2-subunits showed a largely similar distribution pattern in the dentate gyrus of all specimens, a3-subunit expression was variable. Despite similar intensity of staining in the CA1 area for all cases (as exemplified in Fig. 2, third column), in granule cells this subunit showed patchy labeling ranging from very weak (Fig. 11E) to high levels of density (Fig. 11F) along the somata and basal and apical dendritic fields. These case-specific variations were not dependent on age, postmortem interval, or general quality of tissue, suggesting a propensity for plasticity in a3-subunit immunoreactivity in dentate granule cells.

As in the hippocampal fields and dentate hilus, a1-, and less prominently b2,3- and g2-subunit staining revealed nonpyramidal cells in the granule cell and molecular layers. In particular, small round interneurons similar to those described in stratum lacunosum-moleculare of the hippocampus proper were observed. Finally, darkly stained processes were frequently seen coursing through the granule cell layer, originating from interneurons mostly located in dentate hilus, but also in the granule cell and molecular layers (Fig. 10D,G).

TLE specimens with HS

Marked alterations in the distribution pattern and staining intensity of the a1-, a2-, b2,3-, and g2-subunits were observed in the granule cell layer and dendritic fields. At low-power magnification, the molecular layer displayed prominent staining, standing out against the relatively weakly labeled hippocampal fields and hilus (Figs. 1, 2). Staining appeared conserved or augmented when compared to control specimens, despite a >50% loss in granule cells (Fig. 3B), suggesting the presence of more GABA_A receptors on surviving apical dendrites. Of all subunits, a2 exhibited the largest increase, as illustrated for eight cases (Figs. 2, fourth column, 12). For specimens with moderate granule cell loss, the intensity of labeling measured in the molecular layer was higher than that in control specimens. For specimens with severe granule cell loss, the apparent intensity was similar to that in control specimens. a1-, b2,3-, and g2-subunit immunoreactivity was conserved or increased, but not as markedly (Figs. 1, 2, second and fourth columns). In contrast, a3-subunit labeling was variable as in the controls, being either faint (Fig. 11G) or intense (Fig. 11H). For all subunits, changes in staining intensity were most pronounced in the inner portion of the molecular layer along a thin band immediately adjacent to the granule cell layer, where intensely labeled, coarse dendrites were frequently observed at high-power magnification (Figs. 11B,D,H, 13C).

In the basal dendritic field, reduced staining was observed for all subunits. Immunoreactivity was decreased in seven cases, whereas in the other nine cases, labeling was virtually absent, except for a few stained dendrites, some of which reappeared back into the granule cell layer (Figs. 11B,D,H, 12, 13B,C). These two patterns of reduced immunoreactivity in the subgranular layer were not related to the degree of cell loss in the polymorphic layer. Finally, the most prominent changes were observed in the granule cell layer. Surviving granule cells exhibited increased staining for the a1-, a2-, b2,3-, and g2-subunits, their somata varying in size and shape (Figs. 11B,D, 13B,C,E). At the subcellular level, individual granule cells were outlined by intense staining along the surface of the cell bodies (Fig. 13B,E) in contrast to discrete staining observed in controls (Fig. 13A,D).

In conclusion, alterations in GABA_A receptor subunit immunoreactivity in surviving granule cells show a remarkably polarized pattern with increased staining on the soma membrane and apical dendrites and decreased or no staining in the basal dendritic field. The augmented staining in granule cell and molecular layers suggests an upregulation of receptors in surviving granule cells of TLE patients with HS, despite extensive granule cell loss. The magnitude of changes in staining intensity observed in the granule cells was most obvious for the a2-subunit.

Interneurons immunoreactive for the a1-subunit were mostly conserved in the molecular layer with a preferential localization in the outer part (Fig. 7C). Isolated, large and intensely stained cells were also seen, with long dendrites reaching the outer molecular layer and extending into the hilus. Because of loss of staining in the granule cell basal dendrites, the few surviving interneurons were easily identified in the subgranular layer (Fig. 10H,I).

Quantitative analysis

Granule cells were counted in Nissl-stained sections adjacent to those used for densitometric measurements. Cell densities in HS specimens were decreased by >50% compared to autopsy and non-HS cases (p < 0.01 for both), whereas no difference was found between the autopsy and non-HS groups (Fig. 3B). This result was not significantly changed when granule cell numbers were sampled within a 125-μm-wide column to take into account dispersion of granule cell somata (data not shown). Thus, in our HS patient series, granule cell loss was extensive, whereas dispersion was rather limited in most cases.

Differences in GABA_A receptor subunit staining intensity between autopsy, non-HS, and HS groups were assessed quantitatively by densitometry (Fig. 3D–G). In the granule cell layer, the HS group showed increased OD for the a1-, a2-, b2,3-, and g2-subunits, when compared with autopsy specimens (a1- and b2,3-subunits, p < 0.05; a2- and g2-subunits, p < 0.01). When compared to non-HS cases, OD was significantly increased for the a2- and b2,3-subunits in the HS group (p < 0.05 for both). In the inner and outer molecular layers, increased a2-subunit OD was observed in the HS group when compared to autopsy cases (p < 0.05, p < 0.01, respectively). In contrast, in the subgranular layer, OD was significantly decreased for all subunits in the HS group when compared either to autopsy specimens (a1-subunit, p < 0.01; a2-, a3- and b2,3-subunits, p < 0.05) or to non-HS specimens (a1-, a2- and b2,3-subunits, p < 0.05; g2-subunit, p < 0.01). In all layers, no significant difference in OD was found for any of the five subunits.
Figure 11. Changes in subunit-specific GABA\(_A\) receptor immunoreactivity in the dentate gyrus in TLE with HS (B, D, G, H) versus controls (A, C, surgery, TLE without HS; E, F, autopsy). A, B, \(\alpha\)1-subunit; C, D, \(\alpha\)2-subunit; E–H, \(\alpha\)3-subunit. A, C. In control specimens, the somata of granule cells are outlined by faint or no staining for the \(\alpha\)1-subunit (A) and the \(\alpha\)2-subunit (C), whereas apical and basal dendritic fields are moderately labeled. B, D. In TLE with HS specimens, strongly increased \(\alpha\)1-subunit (B) and \(\alpha\)2-subunit immunoreactivity (D) is seen surrounding the somata of granule cells and in the molecular layer, whereas only few basal dendrites remain. Note the granule cell dispersion into the molecular layer in HS (B, arrows). E, F. Two control specimens illustrate the range of \(\alpha\)3-subunit immunoreactivity. Whereas in E staining is absent from the granule cells and their dendritic fields, in F staining is moderate to intense, outlining the granule cell somata and apical dendrites. G, H. In these TLE specimens with HS, \(\alpha\)3-subunit immunoreactivity is either absent in dentate gyrus (G) or, in H shows the same staining pattern as the \(\alpha\)1- and \(\alpha\)2-subunits. Note the variable size of granule cells. Scale bar, 25 \(\mu\)m.
between the autopsy group and non-HS cases. Except for a clear decrease in the subgranular layer, a
3-subunit OD was not significantly different in the HS group when compared to autopsy and
non-HS cases, which reflects the variable degree of granule cell staining for this subunit in all three patient groups, as described
above.

DISCUSSION

Two principal conclusions emerge from this study. First, in the
normal human hippocampus a differential and neuron-specific ex-
pression pattern of GABA_A receptor subtypes was evident, both at
the regional and the cellular level. Second, in TLE patients with
HS, staining was decreased in areas of prominent cell loss, whereas
surviving hippocampal neurons exhibited selective alterations in
the expression of the three major GABA_A receptor subtypes. The
most striking changes were (1) increased staining for distinct
GABA_A receptor subunits on the somata and apical dendrites of
granule cells with reduced labeling on the basal dendrites, (2)
differential reorganization of the a1-, a2-, and a3-subunits in the
CA2 area and in hilar cells, (3) partial and layer-specific loss of
a1-subunit-positive interneurons in the hippocampus proper, and
(4) altered dendritic morphology in many of the surviving inter-
neurons immunopositive for the a1-subunit.

GABA_A receptor subtype expression in the normal
human hippocampus

In previous studies of human hippocampus, only antibodies for the
a1- and b2,3-subunits were available to determine GABA_A recep-
tor distribution (Houser et al., 1988; Mizukami et al., 1997, 1998).
In addition, expression of the a5-subunit has been shown with
ligand binding and autoradiography (Sur et al., 1998; Howell et al.,
1999). Using an antigen-retrieval procedure adapted to human
brain tissue, specific immunostaining for the a2-, a3-, and g2-
subunits is now also possible (Loup et al., 1998). This has permitted
a comprehensive examination of the a1-, a2-, a3-, b2,3-, and
g2-subunits in the present investigation. Based on the staining
pattern of the ubiquitously expressed b2,3- and g2-subunits, we find
that the majority of hippocampal GABA_A receptor subtypes ap-
pear to be labeled with the antibodies used.

GABA_A receptor heterogeneity in the human hippocampus is
best demonstrated with the differential distribution of the a1-, a2-, and a3-subunits, which represent markers of largely distinct recep-
tor subtypes. Thus, whereas all three a-subunits were present in
CA1, possibly in the same pyramidal cells, they were differentially
expressed in CA2 pyramidal cells, and only the a2-subunit was
detected in CA3 pyramidal cells. In the hilus, numerous morpho-
logically distinct cell types were observed, including a population

Figure 12. Upregulation of the GABA_A receptor a2-subunit in the dentate gyrus of seven TLE specimens with HS in comparison to a control specimen
(autopsy). An overview of the hippocampus is shown in color-coded video images. Adjacent sections stained for Nissl are represented in
black and white at higher magnification, with the upper blade of the dentate gyrus depicted to demonstrate granule cell density. In control hippocampus (top left panel),
granule cells are tightly packed, forming a compact layer. In HS specimens with moderate granule cell loss, staining intensity in the molecular layer is higher
than in controls. In HS specimens with severe granule cell loss, the apparent intensity is similar to that in controls. Scale bars: Nissl, 0.5 mm; a2, 2 mm.
of α2-subunit-positive pyramidal-like cells located well within the hilar borders. Mossy cells displayed strong staining for both the α1- and the α2-subunits, but not the α3-subunit. Furthermore, many interneurons throughout the hippocampus were positive for the α1-, but not the α2- or α3-subunit.

The strong staining of α1-subunit-positive interneurons revealed a wide variety of cell types in all hippocampal layers and throughout the dentate gyrus. These cells also expressed the β2,3- and γ2-subunits, suggesting the presence of functional GABAA receptors. According to their morphology and localization, it is likely that these interneurons are a subset of GABA neurons, as reported in human and rodent brain (Gao and Frischy, 1994; Nusser et al., 1995; Esclapez et al., 1996; Zhang et al., 1998). Compared to rodent, however, a larger diversity in cell types and higher complexity in the distribution of α1-subunit-positive interneurons was observed in the human.

Our results differ in several additional respects from those in rodent brain (Fritschy and Möhler, 1995; Spier et al., 1997). First, the α3-subunit, which is virtually absent in rodent hippocampus, was strongly expressed in the CA1 area and was present to varying degrees in dentate granule cells. This finding, unique for the α3-subunit in the dentate gyrus, is unlikely to represent an artifact, as the staining intensity for the α3-subunit in CA1, subiculum, and entorhinal cortex was highly comparable between specimens (Loup et al., 1998). Rather, this may reflect a dynamic regulation of this subunit in granule cells. Second, little or no α1-subunit staining was apparent in human CA3 pyramidal cells, whereas moderate α1-subunit immunoreactivity has been reported in rodent CA3 dendritic fields. Third, hilar mossy cells abundantly expressed both the α1- and α2-subunits in human, whereas this has not been observed in rodent. Fourth, prominent staining was observed on the basal dendrites of dentate granule cells. Basal dendrites, which are usually absent in normal rat granule cells, are a common feature in human brain (Seres and Mrzljak, 1987; Lim et al., 1997). These species differences underscore the need for caution in interpreting findings from animal models of human disease.

Altered GABAA receptor subtype expression in TLE specimens with HS

The following factors must be considered in interpreting our results. First, the age at collection differed between the autopsy subjects and the two surgical patient groups. In agreement with others (Mizukami et al., 1997), we found no evidence of age-related changes in GABAA receptor subunit immunoreactivity, and cell
numbers appeared to be constant in the autopsy group. Second, the method of procurement did not influence the quality of staining, as shown in Figure 1. Tissue and receptor expression were well preserved, even with postmortem intervals of up to 16 hr (Loup et al., 1998). Third, all surgical TLE patients, with HS and without HS, were receiving antiepileptic treatment and had undergone surgical anesthesia. The strongest finding that argues against therapeutically induced changes accounting for our results is the marked difference in GABA_A receptor expression in HS versus non-HS specimens, even though both were taking similar medication. Furthermore, no differences in expression pattern between autopsy controls and the non-HS group receiving antiepileptic drugs were apparent.

The marked decrease in GABA_A receptor staining in the CA1 and CA3 areas and dentate hilus, where cell loss was most severe, is in agreement with results from other studies (Olsen et al., 1992; Wolf et al., 1994; Koepp et al., 1996; Hand et al., 1997). More importantly, however, the reorganization of GABA_A receptors with maintained or increased levels of intensity in areas of relative cell loss points to an increase in the number of receptors per neuron. This was most apparent for the a2-subunit, indicating a relative increase in GABA_A receptors containing this subunit. The fact that such changes were not recognized in previous investigations may reflect the lower spatial resolution of autoradiography and PET analysis and an unavailability of subunit-specific ligands.

The strongest evidence for an upregulation of GABA_A receptors in individual cells was observed in the dentate gyrus. Similar findings have been obtained in several animal models of TLE (Schwarzer et al., 1997; Brooks-Kayal et al., 1998; Nusser et al., 1998; Bouilleret et al., 2000). Upregulation has been proposed to result from hyperactivity at GABA synapses in dentate granule cells (Schwartzkroin, 1998). This hypothesis is supported by the demonstration of activity-dependent changes in GABA_A receptor expression in animal models of TLE (Brooks-Kayal et al., 1998; Nusser et al., 1998) and observations of reorganized axonal circuits involving GABA neurons in human dentate molecular layer (Babb et al., 1989; de Lanerolle et al., 1989; Mathern et al., 1995b, 1999; Blümcke et al., 1996).

A further interesting finding was the significant reduction in staining in granule cell basal dendrites, even though these are conserved in TLE with HS (Scheibel et al., 1974; Isokawa et al., 1993; von Campe et al., 1997). Thus, there appears to be a redistribution of GABA_A receptors within granule cells with increased expression in apical and decreased expression in basal dendrites. These alterations may be compensatory in response to the recurrent excitation because of mossy fiber sprouting in HS (de Lanerolle et al., 1989; Sutula et al., 1989; Houser et al., 1990; Babb et al., 1991; Zhang and Houser, 1999). Paradoxically, however, the reorganized mossy fibers may ultimately contribute to failure of GABA_A receptor function via a zinc-dependent mechanism (Buhl et al., 1996; Brooks-Kayal et al., 1998; Shumate et al., 1998).

Aberrant mossy fiber innervation has also been described in the CA2 area of TLE patients with HS (Houser et al., 1990; Babb et al., 1992; Williamson and Spencer, 1994). Furthermore, CA2 pyramidal cells in HS appear not to exhibit epileptiform bursts (Williamson and Spencer, 1994). The altered subcellular distribution and expression of the a2-subunit variants in CA2 pyramidal cells, which was highly subunit-specific, may represent a correlate of this functional finding.

Although substantial hilar cell loss is typical of HS, we show that a number of cell types remained, including mossy cells, which expressed the a1- and a2-subunits, and a subset of interneurons positive for the a1-subunit. Mossy cells were clearly less prevalent than in controls, yet represented a sizable proportion of the surviving neurons labeled for both subunits, indicating that not all are similarly vulnerable to injury. Among a1-subunit-positive interneurons, mostly large multipolar cells were preserved. In dentate hilus, loss of specific subpopulations of GABA neurons (de Lanerolle et al., 1989; Robbins et al., 1991; Mathern et al., 1995b; Maglóczky et al., 2000), as well as preservation of other subclasses (Babb et al., 1989; Sloviter et al., 1991; Mathern et al., 1995b; Blümcke et al., 1996; Maglóczky et al., 2000), have been reported. This highly differentiated sensitivity to seizure-induced damage underscores the functional and neurochemical specialization of inhibitory cells (Freund and Buzsáki, 1996). Furthermore, many of the surviving hilar interneurons exhibited marked changes in dendritic morphology, as reported recently using intracellular dye injections (Blümcke et al., 1999) or immunohistochemical methods (Maglóczky et al., 2000). In our study, moreover, these alterations were also observed in surviving interneurons located in the CA1-CA3 areas. Future quantitative studies will aim at further characterization of dendritic structure.

We observed a massive loss of a1-subunit-positive interneurons in the CA2 and CA3 pyramidal cell layer. Conceivably, these cells might have survived, but no longer express the a1-subunit-containing receptor subtype. This is, however, unlikely on the basis of studies of other neurochemical markers (see above). Laminar loss of a subpopulation of interneurons, which has not been reported before in human or animal models of TLE, suggests that inhibitory drive is altered at specific inputs on surviving neurons in stratum pyramidale.

In conclusion, we have provided the first comprehensive description of the organization of the three major GABA_A receptor subtypes in the human hippocampus. These results reveal a remarkable complexity in GABA_A receptor subunit expression, which may be necessary to fulfill specific functional requirements of distinct inhibitory neuronal circuits. Furthermore, our analysis of hippocampal specimens from TLE patients with HS shows marked changes in GABA_A receptors with reorganization of specific receptor subtypes in surviving principal cells and interneurons. These findings, unique to the human brain, will be of importance in the design of novel diagnostic and therapeutic strategies.

REFERENCES

Buhl EH, Otsis TS, Moody I (1996) Zinc-induced collapse of augmented
hippocampal α5 subunit-containing γ-aminobutyric acidA receptors have α5β3γ2 pharmacological characteristics. Mol Pharmacol 54:928–933.