UZH-Logo

Maintenance Infos

Compensatory load redistribution of horses with induced weight-bearing forelimb lameness trotting on a treadmill.


Weishaupt, Michael A; Wiestner, Thomas; Hogg, H P; Jordan, P; Auer, Jörg A (2006). Compensatory load redistribution of horses with induced weight-bearing forelimb lameness trotting on a treadmill. Veterinary Journal, 171(1):135-146.

Abstract

The study was performed to obtain a detailed insight into the load and time shifting mechanisms of horses with unilateral weight-bearing forelimb lameness. Reversible lameness was induced in 11 clinically sound horses by applying a solar pressure model. Three degrees of lameness (subtle, mild and moderate) were induced and compared with sound control measurements. Vertical ground reaction force-time histories of all four limbs were recorded simultaneously on an instrumented treadmill. Four compensatory mechanisms could be identified that served to reduce structural stress, i.e. peak vertical force on the affected limb: (1) with increasing lameness, horses reduced the total vertical impulse per stride; (2) the diagonal impulse decreased selectively in the lame diagonal; (3) the impulse was shifted within the lame diagonal to the hindlimb and in the sound diagonal to the forelimb; (4) the rate of loading and the peak forces were reduced by prolonging the stance duration. Except in the diagonal hindlimb, where peak vertical forces increased slightly in the moderate lameness condition, no equivalent compensatory overload situation was observed in the other limbs. Specific force and time information of all four limbs allow the unequivocal identification of the affected limb.

The study was performed to obtain a detailed insight into the load and time shifting mechanisms of horses with unilateral weight-bearing forelimb lameness. Reversible lameness was induced in 11 clinically sound horses by applying a solar pressure model. Three degrees of lameness (subtle, mild and moderate) were induced and compared with sound control measurements. Vertical ground reaction force-time histories of all four limbs were recorded simultaneously on an instrumented treadmill. Four compensatory mechanisms could be identified that served to reduce structural stress, i.e. peak vertical force on the affected limb: (1) with increasing lameness, horses reduced the total vertical impulse per stride; (2) the diagonal impulse decreased selectively in the lame diagonal; (3) the impulse was shifted within the lame diagonal to the hindlimb and in the sound diagonal to the forelimb; (4) the rate of loading and the peak forces were reduced by prolonging the stance duration. Except in the diagonal hindlimb, where peak vertical forces increased slightly in the moderate lameness condition, no equivalent compensatory overload situation was observed in the other limbs. Specific force and time information of all four limbs allow the unequivocal identification of the affected limb.

Citations

35 citations in Web of Science®
41 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 23 Jun 2009
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Equine Department
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Uncontrolled Keywords:Forelimb lameness; Kinetics; GRF; Kinematics; Force measuring treadmill
Language:English
Date:November 2006
Deposited On:23 Jun 2009 10:00
Last Modified:05 May 2016 07:22
Publisher:Elsevier
ISSN:1090-0233
Publisher DOI:https://doi.org/10.1016/j.tvjl.2004.09.004
PubMed ID:15974567
Permanent URL: https://doi.org/10.5167/uzh-19404

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations