UZH-Logo

Maintenance Infos

Respiration-induced attenuation artifact at PET/CT: technical considerations


Goerres, G W; Burger, C; Kamel, E; Seifert, Burkhardt; Kaim, A H; Buck, A; Buehler, T C; Von Schulthess, G K (2003). Respiration-induced attenuation artifact at PET/CT: technical considerations. Radiology, 226(3):906-910.

Abstract

Combined positron emission tomographic (PET)/computed tomographic (CT) scanners allow the use of CT data for attenuation correction of PET images. Eight patients with cancer underwent PET/CT scanning. Transmission scanning was performed with conventional attenuation correction and with CT scanning during maximum inspiration and normal expiration. Image quality was visually compared and fluorine 18 activities were measured in volumes of interest in the lung and myocardium. Analysis of variance for repeated measures revealed a significant decrease (P =.0001) in measured activities between PET images corrected with CT data acquired during maximum inspiration and those corrected with the conventional attenuation correction method or with CT data acquired during normal expiration. Deep inspiration during CT can result in severe deterioration in the final PET image.

Abstract

Combined positron emission tomographic (PET)/computed tomographic (CT) scanners allow the use of CT data for attenuation correction of PET images. Eight patients with cancer underwent PET/CT scanning. Transmission scanning was performed with conventional attenuation correction and with CT scanning during maximum inspiration and normal expiration. Image quality was visually compared and fluorine 18 activities were measured in volumes of interest in the lung and myocardium. Analysis of variance for repeated measures revealed a significant decrease (P =.0001) in measured activities between PET images corrected with CT data acquired during maximum inspiration and those corrected with the conventional attenuation correction method or with CT data acquired during normal expiration. Deep inspiration during CT can result in severe deterioration in the final PET image.

Citations

122 citations in Web of Science®
146 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 29 Jun 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Epidemiology, Biostatistics and Prevention Institute (EBPI)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2003
Deposited On:29 Jun 2009 07:04
Last Modified:05 Apr 2016 13:16
Publisher:Radiological Society of North America
ISSN:0033-8419
Additional Information:Free full text article
Publisher DOI:https://doi.org/10.1148/radiol.2263011732
PubMed ID:12616024

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations