UZH-Logo

Maintenance Infos

Disruption of Doppel prevents neurodegeneration in mice with extensive Prnp deletions.


Genoud, Nicolas; Behrens, A; Miele, G; Robay, D; Heppner, F L; Freigang, S; Aguzzi, A (2004). Disruption of Doppel prevents neurodegeneration in mice with extensive Prnp deletions. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 101(12):4198-4203.

Abstract

The Prnp gene encodes the cellular prion protein PrP(C). Removal of its ORF does not result in pathological phenotypes, but deletions extending into the upstream intron result in cerebellar degeneration, possibly because of ectopic cis-activation of the Prnd locus that encodes the PrP(C) homologue Doppel (Dpl). To test this hypothesis, we removed Prnd from Prnp(o/o) mice by transallelic meiotic recombination. Balanced loxP-mediated ablation yielded mice lacking both PrP(C) and Dpl (Prn(o/o)), which developed normally and showed unimpaired immune functions but suffered from male infertility. However, removal of the Prnd locus abolished cerebellar degeneration, proving that this phenotype is caused by Dpl upregulation. The absence of compound pathological phenotypes in Prn(o/o) mice suggests the existence of alternative compensatory mechanisms. Alternatively, Dpl and PrP(C) may exert distinct functions despite having partly overlapping expression profiles.

The Prnp gene encodes the cellular prion protein PrP(C). Removal of its ORF does not result in pathological phenotypes, but deletions extending into the upstream intron result in cerebellar degeneration, possibly because of ectopic cis-activation of the Prnd locus that encodes the PrP(C) homologue Doppel (Dpl). To test this hypothesis, we removed Prnd from Prnp(o/o) mice by transallelic meiotic recombination. Balanced loxP-mediated ablation yielded mice lacking both PrP(C) and Dpl (Prn(o/o)), which developed normally and showed unimpaired immune functions but suffered from male infertility. However, removal of the Prnd locus abolished cerebellar degeneration, proving that this phenotype is caused by Dpl upregulation. The absence of compound pathological phenotypes in Prn(o/o) mice suggests the existence of alternative compensatory mechanisms. Alternatively, Dpl and PrP(C) may exert distinct functions despite having partly overlapping expression profiles.

Citations

34 citations in Web of Science®
35 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

74 downloads since deposited on 11 Feb 2008
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:23 March 2004
Deposited On:11 Feb 2008 12:26
Last Modified:05 Apr 2016 12:21
Publisher:National Academy of Sciences
ISSN:0027-8424
Publisher DOI:10.1073/pnas.0400131101
PubMed ID:15007175
Permanent URL: http://doi.org/10.5167/uzh-1946

Download

[img]
Preview
Filetype: PDF
Size: 826kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations