Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-19473

White, M A; de Beurs, K M; Didan, K; Inouye, D W; Richardson, A D; Jensen, O P; O'Keefe, J; Zhang, G; Nemani, R R; van Leeuwen, W J D; Brown, J F; de Wit, A; Schaepman, M E; Lin, X; Dettinger, M; Bailey, A S; Kimball, J; Schwartz, M D; Baldocchi, D D; Lee, J T; Lauenroth, W K (2009). Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006. Global Change Biology, 15(10):2335-2359.

[img] PDF - Registered users only
4MB

View at publisher

Abstract

Shifts in the timing of spring phenology are a central feature of global change research. Long-term observations of plant phenology have been used to track vegetation responses to climate variability but are often limited to particular species and locations and may not represent synoptic patterns. Satellite remote sensing is instead used for continental to global monitoring. Although numerous methods exist to extract phenological timing, in particular start-of-spring (SOS), from time series of reflectance data, a comprehensive intercomparison and interpretation of SOS methods has not been conducted. Here, we assess 10 SOS methods for North America between 1982 and 2006. The techniques include consistent inputs from the 8 km Global Inventory Modeling and Mapping Studies Advanced Very High Resolution Radiometer NDVIg dataset, independent data for snow cover, soil thaw, lake ice dynamics, spring streamflow timing, over 16 000 individual measurements of ground-based phenology, and two temperature-driven models of spring phenology. Compared with an ensemble of the 10 SOS methods, we found that individual methods differed in average day-of-year estimates by ±60 days and in standard deviation by ±20 days. The ability of the satellite methods to retrieve SOS estimates was highest in northern latitudes and lowest in arid, tropical, and Mediterranean ecoregions. The ordinal rank of SOS methods varied geographically, as did the relationships between SOS estimates and the cryospheric/hydrologic metrics. Compared with ground observations, SOS estimates were more related to the first leaf and first flowers expanding phenological stages. We found no evidence for time trends in spring arrival from ground- or model-based data; using an ensemble estimate from two methods that were more closely related to ground observations than other methods, SOS trends could be detected for only 12% of North America and were divided between trends towards both earlier and later spring.

Citations

169 citations in Web of Science®
183 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 09 Dec 2009
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
DDC:910 Geography & travel
Language:English
Date:21 April 2009
Deposited On:09 Dec 2009 17:10
Last Modified:27 Nov 2013 23:17
Publisher:Wiley-Blackwell
ISSN:1354-1013
Publisher DOI:10.1111/j.1365-2486.2009.01910.x

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page