UZH-Logo

Maintenance Infos

Thoracic disc herniation in a patient with tethered cord and lumbar syringomyelia and diastematomyelia: magnetic resonance imaging and neurophysiological findings


Kramer, J L K; Dvorak, M; Curt, A (2009). Thoracic disc herniation in a patient with tethered cord and lumbar syringomyelia and diastematomyelia: magnetic resonance imaging and neurophysiological findings. Spine, 34(14):E484-E487.

Abstract

STUDY DESIGN: Case report.
OBJECTIVE: To describe the diagnostic challenges in a patient suffering from thoracic disc herniation (TDH) and spina bifida complicated by multiple lumbar spinal cord abnormalities, i.e., tethered cord, lumbar syringomyelia, and diastematomyelia. SUMMARY OF BACKGROUND DATA: Advances in neuroimaging, i.e., magnetic resonance imaging, increase the sensitivity to disclose both clinically relevant but also other spine and spinal cord abnormalities. TDH accounts for less than 1% of all surgically treated disc herniations. Syringomyelia and diastematomyelia are comparably rare and present with varying degrees of spinal cord dysfunction. METHODS: A 54-year-old women presented with progressive pain and sensorimotor symptoms in the lower back and limbs. Neurologic examination revealed lower limb spastic motor deficits and spinal ataxia. Magnetic resonance imaging revealed a T6-T7 disc herniation, with spinal cord signal change in addition to a spina bifida with sacral tethered cord, lumbar syringomyelia, and diastematomyelia. Combined neurophysiological testing identified a neurologic lesion in the mid thoracic cord, with normal lower limb nerve conduction and reflex recordings, but pathologic somatosensory-evoked potential and T6 paravertebral electromyography. RESULTS: The patient was diagnosed with a clinically relevant T6-T7 disc herniation and underwent successful surgical decompression resulting in electrophysiological improvements. CONCLUSION: This unique case highlights the value of electrophysiology in the evaluation of a complex spinal disorder in a patient suffering from acquired TDH in the presence of extensive congenital spine and spinal cord abnormalities. Clinical symptoms and signs can be complemented by neurophysiological techniques to improve diagnostic accuracy and improve the basis for treatment recommendations. In cases involving multiple spinal abnormalities, a comprehensive neurophysiological assessment beyond paravertebral electromyography studies, including nerve conduction and somatosensory-evoked potential recordings, is recommended to assist in confirming the diagnosis.

STUDY DESIGN: Case report.
OBJECTIVE: To describe the diagnostic challenges in a patient suffering from thoracic disc herniation (TDH) and spina bifida complicated by multiple lumbar spinal cord abnormalities, i.e., tethered cord, lumbar syringomyelia, and diastematomyelia. SUMMARY OF BACKGROUND DATA: Advances in neuroimaging, i.e., magnetic resonance imaging, increase the sensitivity to disclose both clinically relevant but also other spine and spinal cord abnormalities. TDH accounts for less than 1% of all surgically treated disc herniations. Syringomyelia and diastematomyelia are comparably rare and present with varying degrees of spinal cord dysfunction. METHODS: A 54-year-old women presented with progressive pain and sensorimotor symptoms in the lower back and limbs. Neurologic examination revealed lower limb spastic motor deficits and spinal ataxia. Magnetic resonance imaging revealed a T6-T7 disc herniation, with spinal cord signal change in addition to a spina bifida with sacral tethered cord, lumbar syringomyelia, and diastematomyelia. Combined neurophysiological testing identified a neurologic lesion in the mid thoracic cord, with normal lower limb nerve conduction and reflex recordings, but pathologic somatosensory-evoked potential and T6 paravertebral electromyography. RESULTS: The patient was diagnosed with a clinically relevant T6-T7 disc herniation and underwent successful surgical decompression resulting in electrophysiological improvements. CONCLUSION: This unique case highlights the value of electrophysiology in the evaluation of a complex spinal disorder in a patient suffering from acquired TDH in the presence of extensive congenital spine and spinal cord abnormalities. Clinical symptoms and signs can be complemented by neurophysiological techniques to improve diagnostic accuracy and improve the basis for treatment recommendations. In cases involving multiple spinal abnormalities, a comprehensive neurophysiological assessment beyond paravertebral electromyography studies, including nerve conduction and somatosensory-evoked potential recordings, is recommended to assist in confirming the diagnosis.

Citations

4 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:15 June 2009
Deposited On:20 Jul 2009 14:50
Last Modified:05 Apr 2016 13:17
Publisher:Lippincott Wiliams & Wilkins
ISSN:0362-2436
Publisher DOI:https://doi.org/10.1097/BRS.0b013e31819211c9
PubMed ID:19525827

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations