UZH-Logo

Reconstructing prions: fibril assembly from simple yeast to complex mammals


Sigurdson, C B; Polymenidou, M; Aguzzi, A (2005). Reconstructing prions: fibril assembly from simple yeast to complex mammals. Neurodegenerative Diseases, 2(1):1-5.

Abstract

With the epizootics of bovine spongiform encephalopathy (BSE) in North American cattle, BSE infections in goats, new forms of human Creutzfeldt-Jakob disease (CJD) and the spread of chronic wasting disease in North American deer and elk, one wonders whether we are gaining control over the transmissible spongiform encephalopathies (TSEs). Although many basic scientific questions in the prion field remain hotly debated and unresolved [1], including the function of the cellular prion protein (PrP), light has been shed on a diverse array of topics, and discussions at the latest TSE meeting ranged broadly from yeast prion fibril assembly to mammalian prion neurotoxicity to future TSE therapies. Prion diseases are protein misfolding disorders which cause degeneration of the central nervous system (CNS) and ultimately death. The unique and surprising feature is that prion diseases are infectious. Yeast prions are derived from proteins differing from the mammalian PrP but are also infectious, self propagating proteins which typically can convert into an aggregated, amyloidogenic form having high beta sheet content. The simple yeast organism has served as a valuable model for understanding aspects of prion biology, such as prion fibril assembly.

With the epizootics of bovine spongiform encephalopathy (BSE) in North American cattle, BSE infections in goats, new forms of human Creutzfeldt-Jakob disease (CJD) and the spread of chronic wasting disease in North American deer and elk, one wonders whether we are gaining control over the transmissible spongiform encephalopathies (TSEs). Although many basic scientific questions in the prion field remain hotly debated and unresolved [1], including the function of the cellular prion protein (PrP), light has been shed on a diverse array of topics, and discussions at the latest TSE meeting ranged broadly from yeast prion fibril assembly to mammalian prion neurotoxicity to future TSE therapies. Prion diseases are protein misfolding disorders which cause degeneration of the central nervous system (CNS) and ultimately death. The unique and surprising feature is that prion diseases are infectious. Yeast prions are derived from proteins differing from the mammalian PrP but are also infectious, self propagating proteins which typically can convert into an aggregated, amyloidogenic form having high beta sheet content. The simple yeast organism has served as a valuable model for understanding aspects of prion biology, such as prion fibril assembly.

Citations

Altmetrics

Downloads

1 download since deposited on 11 Feb 2008
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2005
Deposited On:11 Feb 2008 12:27
Last Modified:07 Jul 2016 12:20
Publisher:Karger
ISSN:1660-2854
Publisher DOI:10.1159/000086425
PubMed ID:16908997
Permanent URL: http://doi.org/10.5167/uzh-1977

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 61kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations