UZH-Logo

Composition multilingue de sentiments


Petrakis, S; Klenner, M; Ailloud, É; Fahrni, A (2009). Composition multilingue de sentiments. In: Traitement Automatique des Langues Naturelles (TALN 2009), Senlis, France, 24 June 2009 - 26 June 2009.

Abstract

Nous présentons ici PolArt, un outil multilingue pour l’analyse de sentiments qui aborde la composition des sentiments en appliquant des transducteurs en cascade. La compositionnalité est assureé au moyen de polarités préalables extraites d’un lexique et des règles
de composition appliquées de manière incrémentielle.

We introduce PolArt, a multilingual tool for sentiment detection that copes with sentiment composition through the application of cascaded transducers. Compositionality is enabled by prior polarities taken from a polarity lexicon and the compositional rules applied incrementally.

Nous présentons ici PolArt, un outil multilingue pour l’analyse de sentiments qui aborde la composition des sentiments en appliquant des transducteurs en cascade. La compositionnalité est assureé au moyen de polarités préalables extraites d’un lexique et des règles
de composition appliquées de manière incrémentielle.

We introduce PolArt, a multilingual tool for sentiment detection that copes with sentiment composition through the application of cascaded transducers. Compositionality is enabled by prior polarities taken from a polarity lexicon and the compositional rules applied incrementally.

Downloads

110 downloads since deposited on 10 Aug 2009
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Conference or Workshop Item (Other), refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Computational Linguistics
Dewey Decimal Classification:000 Computer science, knowledge & systems
410 Linguistics
Language:French
Event End Date:26 June 2009
Deposited On:10 Aug 2009 12:50
Last Modified:05 Apr 2016 13:18
Permanent URL: http://doi.org/10.5167/uzh-19794

Download

[img]
Preview
Filetype: PDF
Size: 154kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations