UZH-Logo

Proteomic analysis in aortic media of patients with Marfan syndrome reveals increased activity of calpain 2 in aortic aneurysms


Pilop, C; Aregger, F; Gromann, R C; Brunisholz, R; Gerrits, B; Schaffner, T; Gromann, J H; Mátyás, G; Carrel, T; Frey, Brigitte M (2009). Proteomic analysis in aortic media of patients with Marfan syndrome reveals increased activity of calpain 2 in aortic aneurysms. Circulation, 120(11):983-991.

Abstract

BACKGROUND: Marfan syndrome (MFS) is a heritable disorder of connective tissue, affecting principally skeletal, ocular, and cardiovascular systems. The most life-threatening manifestations are aortic aneurysm and dissection. We investigated changes in the proteome of aortic media in patients with and without MFS to gain insight into molecular mechanisms leading to aortic dilatation. METHODS AND RESULTS: Aortic samples were collected from 46 patients. Twenty-two patients suffered from MFS, 9 patients had bicuspid aortic valve, and 15 patients without connective tissue disorder served as controls. Aortic media was isolated and its proteome was analyzed in 12 patients with the use of 2-dimensional difference gel electrophoresis and mass spectrometry. We found higher amounts of filamin A C-terminal fragment, calponin 1, vinculin, microfibril-associated glycoprotein 4, and myosin-10 heavy chain in aortic media of MFS aneurysm samples than in controls. Regulation of filamin A C-terminal fragmentation was validated in all patient samples by immunoblotting. Cleavage of filamin A and the calpain substrate spectrin was increased in the MFS and bicuspid aortic valve groups. Extent of cleavage correlated positively with calpain 2 expression and negatively with the expression of its endogenous inhibitor calpastatin. CONCLUSIONS: Our observation demonstrates for the first time upregulation of the C-terminal fragment of filamin A in dilated aortic media of MFS and bicuspid aortic valve patients. In addition, our results present evidence that the cleavage of filamin A is highly likely the result of the protease calpain. Increased calpain activity might explain, at least in part, histological alterations in dilated aorta.

BACKGROUND: Marfan syndrome (MFS) is a heritable disorder of connective tissue, affecting principally skeletal, ocular, and cardiovascular systems. The most life-threatening manifestations are aortic aneurysm and dissection. We investigated changes in the proteome of aortic media in patients with and without MFS to gain insight into molecular mechanisms leading to aortic dilatation. METHODS AND RESULTS: Aortic samples were collected from 46 patients. Twenty-two patients suffered from MFS, 9 patients had bicuspid aortic valve, and 15 patients without connective tissue disorder served as controls. Aortic media was isolated and its proteome was analyzed in 12 patients with the use of 2-dimensional difference gel electrophoresis and mass spectrometry. We found higher amounts of filamin A C-terminal fragment, calponin 1, vinculin, microfibril-associated glycoprotein 4, and myosin-10 heavy chain in aortic media of MFS aneurysm samples than in controls. Regulation of filamin A C-terminal fragmentation was validated in all patient samples by immunoblotting. Cleavage of filamin A and the calpain substrate spectrin was increased in the MFS and bicuspid aortic valve groups. Extent of cleavage correlated positively with calpain 2 expression and negatively with the expression of its endogenous inhibitor calpastatin. CONCLUSIONS: Our observation demonstrates for the first time upregulation of the C-terminal fragment of filamin A in dilated aortic media of MFS and bicuspid aortic valve patients. In addition, our results present evidence that the cleavage of filamin A is highly likely the result of the protease calpain. Increased calpain activity might explain, at least in part, histological alterations in dilated aorta.

Citations

27 citations in Web of Science®
31 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

325 downloads since deposited on 02 Nov 2009
50 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
08 University Research Priority Programs > Systems Biology / Functional Genomics
04 Faculty of Medicine > Institute of Medical Molecular Genetics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:15 September 2009
Deposited On:02 Nov 2009 17:07
Last Modified:05 Apr 2016 13:18
Publisher:Lippincott Wiliams & Wilkins
ISSN:0009-7322
Publisher DOI:10.1161/CIRCULATIONAHA.108.843516
PubMed ID:19720936
Permanent URL: http://doi.org/10.5167/uzh-19864

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations