UZH-Logo

Oxidoreductase activity of oligosaccharyltransferase subunits Ost3p and Ost6p defines site-specific glycosylation efficiency


Schulz, B L; Stirnimann, C U; Grimshaw, J P A; Brozzo, M S; Fritsch, F; Mohorko, E; Capitani, G; Glockshuber, R; Grütter, M G; Aebi, M (2009). Oxidoreductase activity of oligosaccharyltransferase subunits Ost3p and Ost6p defines site-specific glycosylation efficiency. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 106(27):11061-11066.

Abstract

Asparagine-linked glycosylation is a common posttranslational modification of diverse secretory and membrane proteins in eukaryotes, where it is catalyzed by the multiprotein complex oligosaccharyltransferase. The functions of the protein subunits of oligoasccharyltransferase, apart from the catalytic Stt3p, are ill defined. Here we describe functional and structural investigations of the Ost3/6p components of the yeast enzyme. Genetic, biochemical and structural analyses of the lumenal domain of Ost6p revealed oxidoreductase activity mediated by a thioredoxin-like fold with a distinctive active-site loop that changed conformation with redox state. We found that mutation of the active-site cysteine residues of Ost6p and its paralogue Ost3p affected the glycosylation efficiency of a subset of glycosylation sites. Our results show that eukaryotic oligosaccharyltransferase is a multifunctional enzyme that acts at the crossroads of protein modification and protein folding.

Asparagine-linked glycosylation is a common posttranslational modification of diverse secretory and membrane proteins in eukaryotes, where it is catalyzed by the multiprotein complex oligosaccharyltransferase. The functions of the protein subunits of oligoasccharyltransferase, apart from the catalytic Stt3p, are ill defined. Here we describe functional and structural investigations of the Ost3/6p components of the yeast enzyme. Genetic, biochemical and structural analyses of the lumenal domain of Ost6p revealed oxidoreductase activity mediated by a thioredoxin-like fold with a distinctive active-site loop that changed conformation with redox state. We found that mutation of the active-site cysteine residues of Ost6p and its paralogue Ost3p affected the glycosylation efficiency of a subset of glycosylation sites. Our results show that eukaryotic oligosaccharyltransferase is a multifunctional enzyme that acts at the crossroads of protein modification and protein folding.

Citations

57 citations in Web of Science®
57 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 28 Jul 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2009
Deposited On:28 Jul 2009 09:22
Last Modified:05 Apr 2016 13:18
Publisher:National Academy of Sciences
ISSN:0027-8424
Publisher DOI:10.1073/pnas.0812515106
PubMed ID:19549845
Permanent URL: http://doi.org/10.5167/uzh-19885

Download

[img]Filetype: PDF - Registered users only
Size: 5MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations