UZH-Logo

Maintenance Infos

A beta-scintillator for surface measurements of radiotracer kinetics in the intact rodent cortex


Wyss, M T; Obrist, N M; Haiss, F; Eckert, R; Stanley, R; Burger, C; Buck, A; Weber, B (2009). A beta-scintillator for surface measurements of radiotracer kinetics in the intact rodent cortex. NeuroImage, 48(2):339-347.

Abstract

beta(+)-sensitive probes are useful tools for the measurement of radiotracer kinetics in small animals. They allow the cost-effective development of new PET tracers and offer the possibility to investigate a variety of cerebral processes. The study's main aim was the in vivo evaluation of a probe system for cerebral surface acquisitions. The detector system is a 0.2-mm thick scintillating disk of 3-mm diameter, positioned close to the cerebral surface. The study consists of 4 subparts: (1) simulation of the detection volume, (2) direct comparison with the classic intracortical beta probe regarding its capability to acquire kinetic data, (3) test of the ability to detect local tracer accumulations during infraorbital nerve (ION) electrostimulation and (4) demonstration of the feasibility to measure tracer kinetics in awake animals. Kinetic data acquired with (18)F-fluorodeoxyglucose and (15)O-H(2)O were fitted with standard compartment models. The surface probe measurements were in good agreement with those obtained using the intracortical scintillator. ION electrostimulation induced a marked increase in tracer accumulation adequately detected by the surface probe. In the head-fixed animal, a marked change in FDG kinetics was detected between the awake and anesthetized state. The novel surface probe system proved to be a valuable instrument for in vivo radiotracer studies of the cerebral cortex. Its main advantage is the absence of any tissue damage. In addition, serial acquisitions of tracer kinetics in the awake animal turned out to be feasible.

beta(+)-sensitive probes are useful tools for the measurement of radiotracer kinetics in small animals. They allow the cost-effective development of new PET tracers and offer the possibility to investigate a variety of cerebral processes. The study's main aim was the in vivo evaluation of a probe system for cerebral surface acquisitions. The detector system is a 0.2-mm thick scintillating disk of 3-mm diameter, positioned close to the cerebral surface. The study consists of 4 subparts: (1) simulation of the detection volume, (2) direct comparison with the classic intracortical beta probe regarding its capability to acquire kinetic data, (3) test of the ability to detect local tracer accumulations during infraorbital nerve (ION) electrostimulation and (4) demonstration of the feasibility to measure tracer kinetics in awake animals. Kinetic data acquired with (18)F-fluorodeoxyglucose and (15)O-H(2)O were fitted with standard compartment models. The surface probe measurements were in good agreement with those obtained using the intracortical scintillator. ION electrostimulation induced a marked increase in tracer accumulation adequately detected by the surface probe. In the head-fixed animal, a marked change in FDG kinetics was detected between the awake and anesthetized state. The novel surface probe system proved to be a valuable instrument for in vivo radiotracer studies of the cerebral cortex. Its main advantage is the absence of any tissue damage. In addition, serial acquisitions of tracer kinetics in the awake animal turned out to be feasible.

Citations

4 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 27 Jul 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Nuclear Medicine
04 Faculty of Medicine > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:1 November 2009
Deposited On:27 Jul 2009 14:16
Last Modified:05 Apr 2016 13:18
Publisher:Elsevier
ISSN:1053-8119
Publisher DOI:10.1016/j.neuroimage.2009.06.077
PubMed ID:19591950
Permanent URL: http://doi.org/10.5167/uzh-19946

Download

[img]
Filetype: PDF - Registered users only
Size: 521kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations