Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-20685

Lüscher, P; Weibel, R; Burghardt, D (2009). Integrating ontological modelling and Bayesian inference for pattern classification in topographic vector data. Computers, Environment and Urban Systems, 33(5):363-374.

[img]
Preview
Accepted Version
PDF
2240Kb
[img]PDF - Registered users only
2194Kb

Abstract

This paper presents an ontology-driven approach for spatial database enrichment in support of map generalisation. Ontology-driven spatial database enrichment is a promising means to provide better transparency, flexibility and reusability in comparison to purely algorithmic approaches. Geographic concepts manifested in spatial patterns are formalised by means of ontologies that are used to trigger
appropriate low level pattern recognition techniques. The paper focuses on inference in the presence of vagueness, which is common in definitions of spatial phenomena, and
on the influence of the complexity of spatial measures on classification accuracy. The concept of the English terraced house serves as an example to demonstrate how
geographic concepts can be modelled in an ontology for spatial database enrichment. Owing to their good integration into ontologies, and their ability to deal with vague definitions, supervised Bayesian inference is used for inferring complex concepts. The approach is validated in experiments using large vector datasets representing buildings of four different cities. We compar classification results obtained with the proposed approach to results produced by a more traditional ontology approach. The proposed approach performed considerably better in comparison to the traditional ontology
approach. Besides clarifying the benefits of using ontologies in spatial database enrichment, our research demonstrates that Bayesian networks are a suitable method to integrate vague knowledge about conceptualisations in cartography and GIScience.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
DDC:910 Geography & travel
Language:English
Date:2009
Deposited On:23 Sep 2009 11:09
Last Modified:23 Nov 2012 13:27
Publisher:Elsevier
ISSN:0198-9715
Publisher DOI:10.1016/j.compenvurbsys.2009.07.005
Official URL:http://www.sciencedirect.com/science/journal/01989715
Citations:Google Scholar™

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page