Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-20965

Kokotilo, K J; Eng, J; Curt, A (2009). Reorganization and Preservation of Motor Control of the Brain in Spinal Cord Injury: A Systematic Review. Journal of Neurotrauma, 26(11):2113-2126.

View at publisher


Reorganization of brain function in patients with CNS damage has been identified as one of the fundamental mechanisms involved in the recovery of sensori-motor function. Spinal cord injury (SCI) brain mapping studies during motor tasks aim for assessing the reorganization and preservation of brain networks involved in motor control. Revealing the activation of cortical and sub-cortical brain areas in patients with SCI can indicate principal patterns of brain reorganization when the neurotrauma is distal to the brain. This review assessed brain activation after SCI in terms of intensity, volume, and somatotopic localization, as well as preservation of activation during attempted and/or imagined movements. Twenty-five studies meeting the inclusion criteria could be identified in MEDLINE (1980 to January 2008). Relevant characteristics of studies (level of lesion, time after injury, motor task) and mapping techniques varied widely. Changes in brain activation were found in both cortical and subcortical areas of SCI subjects. In addition, several studies described a shift in the region of brain activation. These patterns appeared to be dynamic and influenced by the level, completeness and time after injury, as well as extent of clinical recovery. In addition, several aspects of reorganization of brain function following SCI resembled those reported in stroke. This review demonstrates that brain networks involved in different demands of motor control remain responsive even in chronic paralysis. These findings imply that therapeutic strategies aiming for restoring spinal cord function even in chronic SCI can build on a preserved competent brain control.


57 citations in Web of Science®
58 citations in Scopus®
Google Scholar™



53 downloads since deposited on 29 Sep 2009
13 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Date:21 November 2009
Deposited On:29 Sep 2009 13:22
Last Modified:05 Apr 2016 13:21
Publisher:Mary Ann Liebert
Publisher DOI:10.1089/neu.2008.0688
PubMed ID:19604097

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page