Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-20972

Reichold, J; Stampanoni, M; Lena Keller, A; Buck, A; Jenny, P; Weber, B (2009). Vascular graph model to simulate the cerebral blood flow in realistic vascular networks. Journal of Cerebral Blood Flow and Metabolism, 29(8):1429-1443.

View at publisher


At its most fundamental level, cerebral blood flow (CBF) may be modeled as fluid flow driven through a network of resistors by pressure gradients. The composition of the blood as well as the cross-sectional area and length of a vessel are the major determinants of its resistance to flow. Here, we introduce a vascular graph modeling framework based on these principles that can compute blood pressure, flow and scalar transport in realistic vascular networks. By embedding the network in a computational grid representative of brain tissue, the interaction between the two compartments can be captured in a truly three-dimensional manner and may be applied, among others, to simulate oxygen extraction from the vessels. Moreover, we have devised an upscaling algorithm that significantly reduces the computational expense and eliminates the need for detailed knowledge on the topology of the capillary bed. The vascular graph framework has been applied to investigate the effect of local vascular dilation and occlusion on the flow in the surrounding network.


41 citations in Web of Science®
46 citations in Scopus®
Google Scholar™



121 downloads since deposited on 30 Sep 2009
25 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:570 Life sciences; biology
170 Ethics
610 Medicine & health
Date:August 2009
Deposited On:30 Sep 2009 12:33
Last Modified:05 Apr 2016 13:21
Publisher:Nature Publishing Group
Publisher DOI:10.1038/jcbfm.2009.58
PubMed ID:19436317

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page