UZH-Logo

Maintenance Infos

Experimental invasion by legumes reveals non-random assembly rules in grassland communities


Turnbull, L A; Rahm, S; Baudois, O; Eichenberger-Glinz, S; Wacker, L; Schmid, B (2005). Experimental invasion by legumes reveals non-random assembly rules in grassland communities. Journal of Ecology, 93(6):1062-1070.

Abstract

1. Although experimental studies usually reveal that resistance to invasion increases with species diversity, observational studies sometimes show the opposite trend. The higher resistance of diverse plots to invasion may be partly due to the increased probability of a plot containing a species with similar resource requirements to the invader.
2. We conducted a study of the invasibility of monocultures belonging to three different functional groups by seven sown species of legume. By only using experimentally established monocultures, rather than manipulating the abundance of particular functional groups, we removed both species diversity and differences in underlying abiotic conditions as potentially confounding variables.
3. We found that legume monocultures were more resistant than monocultures of grasses or non-leguminous forbs to invasion by sown legumes but not to invasion by other unsown species. The functional group effect remained after controlling for differences in total biomass and the average height of the above-ground biomass.
4. The relative success of legume species and types also varied with monoculture characteristics. The proportional biomass of climbing legumes increased strongly with biomass height in non-leguminous forb monocultures, while it declined with biomass height in grass monocultures. Trifolium pratense was the most successful invader in grass monocultures, while Vicia cracca was the most successful in non-leguminous forb monocultures.
5. Our results suggest that non-random assembly rules operate in grassland communities both between and within functional groups. Legume invaders found it much more difficult to invade legume plots, while grass and non-leguminous forb plots favoured non-climbing and climbing legumes, respectively. If plots mimic monospecific patches, the effect of these assembly rules in diverse communities might depend upon the patch structure of diverse communities. This dependency on patch structure may contribute to differences in results of research from experimental vs. natural communities.

1. Although experimental studies usually reveal that resistance to invasion increases with species diversity, observational studies sometimes show the opposite trend. The higher resistance of diverse plots to invasion may be partly due to the increased probability of a plot containing a species with similar resource requirements to the invader.
2. We conducted a study of the invasibility of monocultures belonging to three different functional groups by seven sown species of legume. By only using experimentally established monocultures, rather than manipulating the abundance of particular functional groups, we removed both species diversity and differences in underlying abiotic conditions as potentially confounding variables.
3. We found that legume monocultures were more resistant than monocultures of grasses or non-leguminous forbs to invasion by sown legumes but not to invasion by other unsown species. The functional group effect remained after controlling for differences in total biomass and the average height of the above-ground biomass.
4. The relative success of legume species and types also varied with monoculture characteristics. The proportional biomass of climbing legumes increased strongly with biomass height in non-leguminous forb monocultures, while it declined with biomass height in grass monocultures. Trifolium pratense was the most successful invader in grass monocultures, while Vicia cracca was the most successful in non-leguminous forb monocultures.
5. Our results suggest that non-random assembly rules operate in grassland communities both between and within functional groups. Legume invaders found it much more difficult to invade legume plots, while grass and non-leguminous forb plots favoured non-climbing and climbing legumes, respectively. If plots mimic monospecific patches, the effect of these assembly rules in diverse communities might depend upon the patch structure of diverse communities. This dependency on patch structure may contribute to differences in results of research from experimental vs. natural communities.

Citations

35 citations in Web of Science®
36 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

54 downloads since deposited on 11 Feb 2008
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:functional groups, legumes, resistance to invasion, seed-addition experiment
Language:English
Date:2005
Deposited On:11 Feb 2008 12:28
Last Modified:05 Apr 2016 12:21
Publisher:Wiley-Blackwell
ISSN:0022-0477
Additional Information:The definitive version is available at www.blackwell-synergy.com
Publisher DOI:10.1111/j.1365-2745.2005.01051.x
Related URLs:http://www.jstor.org/stable/3599656
Permanent URL: http://doi.org/10.5167/uzh-2123

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 454kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations