UZH-Logo

Maintenance Infos

Grid diagrams and Khovanov homology


Droz, J-M; Wagner, E (2009). Grid diagrams and Khovanov homology. Algebraic & Geometric Topology, 9(3):1275-1297.

Abstract

We explain how to compute the Jones polynomial of a link from one of its grid diagrams and we observe a connection between Bigelow’s homological definition of the Jones polynomial and Kauffman’s definition of the Jones polynomial. Consequently, we prove that the Maslov grading on the Seidel–Smith symplectic link invariant coincides with the difference between the homological grading on Khovanov homology and the Jones grading on Khovanov homology. We give some evidence for the truth of the Seidel–Smith conjecture.

We explain how to compute the Jones polynomial of a link from one of its grid diagrams and we observe a connection between Bigelow’s homological definition of the Jones polynomial and Kauffman’s definition of the Jones polynomial. Consequently, we prove that the Maslov grading on the Seidel–Smith symplectic link invariant coincides with the difference between the homological grading on Khovanov homology and the Jones grading on Khovanov homology. We give some evidence for the truth of the Seidel–Smith conjecture.

Altmetrics

Downloads

16 downloads since deposited on 14 Apr 2010
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Uncontrolled Keywords:Jones polynomial, Khovanov homology, Seidel–Smith conjecture
Language:English
Date:2009
Deposited On:14 Apr 2010 06:44
Last Modified:05 Apr 2016 13:22
Publisher:Mathematical Sciences Publishers
ISSN:1472-2739
Publisher DOI:10.2140/agt.2009.9.1275
Permanent URL: http://doi.org/10.5167/uzh-21334

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations