For a random permutation of $n$ objects, as $n \to \infty$, the process giving the proportion of elements in the longest cycle, the second-longest cycle, and so on, converges in distribution to the Poisson–Dirichlet process with parameter 1. This was proved in 1977 by Kingman and by Vershik and Schmidt. For soft reasons, this is equivalent to the statement that the random permutations and the Poisson–Dirichlet process can be coupled so that zero is the limit of the expected $\ell_1$ distance between the process of cycle length proportions and the Poisson–Dirichlet process. We investigate how rapid this metric convergence can be, and in doing so, give two new proofs of the distributional convergence.

One of the couplings we consider has an analogue for the prime factorizations of a uniformly distributed random integer, and these couplings rely on the ‘scale-invariant spacing lemma’ for the scale-invariant Poisson processes, proved in this paper.

Arratia, R; Barbour, A D; Tavaré, S (2006). *A tale of three couplings: Poisson-Dirichlet and GEM approximations for random permutations.* Combinatorics, Probability & Computing, 15(1-2):31-62.

## Abstract

For a random permutation of $n$ objects, as $n \to \infty$, the process giving the proportion of elements in the longest cycle, the second-longest cycle, and so on, converges in distribution to the Poisson–Dirichlet process with parameter 1. This was proved in 1977 by Kingman and by Vershik and Schmidt. For soft reasons, this is equivalent to the statement that the random permutations and the Poisson–Dirichlet process can be coupled so that zero is the limit of the expected $\ell_1$ distance between the process of cycle length proportions and the Poisson–Dirichlet process. We investigate how rapid this metric convergence can be, and in doing so, give two new proofs of the distributional convergence.

One of the couplings we consider has an analogue for the prime factorizations of a uniformly distributed random integer, and these couplings rely on the ‘scale-invariant spacing lemma’ for the scale-invariant Poisson processes, proved in this paper.

## Citations

## Altmetrics

## Downloads

## Additional indexing

Item Type: | Journal Article, refereed, original work |
---|---|

Communities & Collections: | 07 Faculty of Science > Institute of Mathematics |

Dewey Decimal Classification: | 510 Mathematics |

Language: | English |

Date: | 2006 |

Deposited On: | 05 Jan 2010 15:00 |

Last Modified: | 05 Apr 2016 13:23 |

Publisher: | Cambridge University Press |

ISSN: | 0963-5483 |

Additional Information: | Copyright © 2006 Cambridge University Press |

Publisher DOI: | https://doi.org/10.1017/S0963548305007054 |

## Download

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.

You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.