Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-21674

Bolthausen, E; Giacomin, G (2005). Periodic copolymers at selective interfaces: a large deviations approach. Annals of Applied Probability, 15(1B):963-983.

[img]
Preview
PDF
1MB

Abstract

We analyze a (1+1)-dimension directed random walk model of a polymer dipped in a medium constituted by two immiscible solvents separated by a flat interface. The polymer chain is heterogeneous in the sense that a single monomer may energetically favor one or the other solvent. We focus on the case in which the polymer types are periodically distributed along the chain or, in other words, the polymer is constituted of identical stretches of fixed length. The phenomenon that one wants to analyze is the localization at the interface: energetically favored configurations place most of the monomers in the preferred solvent and this can be done only if the polymer sticks close to the interface.

We investigate, by means of large deviations, the energy–entropy competition that may lead, according to the value of the parameters (the strength of the coupling between monomers and solvents and an asymmetry parameter), to localization. We express the free energy of the system in terms of a variational formula that we can solve. We then use the result to analyze the phase diagram.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
DDC:510 Mathematics
Uncontrolled Keywords:Copolymers; localization–delocalization transition; energy–entropy competition; random walk; large deviations; Donsker–Varadhan theory
Language:English
Date:2005
Deposited On:03 Feb 2010 07:36
Last Modified:27 Nov 2013 23:12
Publisher:Institute of Mathematical Statistics
ISSN:1050-5164
Publisher DOI:10.1214/105051604000000800
Citations:Web of Science®. Times Cited: 5
Google Scholar™
Scopus®. Citation Count: 6

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page