UZH-Logo

Maintenance Infos

Regular selections for multiple-valued functions


De Lellis, C; Grisanti, C; Tilli, P (2004). Regular selections for multiple-valued functions. Annali di Matematica Pura ed Applicata, 183(1):79-95.

Abstract

Given a multiple-valued function f, we deal with the problem of selecting its single valued branches. This problem can be stated in a rather abstract setting considering a metric space E and a finite group G of isometries of E. Given a function f which takes values in the equivalence classes of E/G, the problem consists in finding a map g with the same domain as f and taking values in E, such that at every point t the equivalence class of g(t) coincides with f(t). If the domain of f is an interval, we show the existence of a function g with these properties which, moreover, has the same modulus of continuity of f. In the particular case where E is the product of Q copies of ℝ n and G is the group of permutations of Q elements, it is possible to introduce a notion of differentiability for multiple valued functions. In this case, we prove that the function g can be constructed in such a way to preserve C k,α regularity. Some related problems are also discussed.

Given a multiple-valued function f, we deal with the problem of selecting its single valued branches. This problem can be stated in a rather abstract setting considering a metric space E and a finite group G of isometries of E. Given a function f which takes values in the equivalence classes of E/G, the problem consists in finding a map g with the same domain as f and taking values in E, such that at every point t the equivalence class of g(t) coincides with f(t). If the domain of f is an interval, we show the existence of a function g with these properties which, moreover, has the same modulus of continuity of f. In the particular case where E is the product of Q copies of ℝ n and G is the group of permutations of Q elements, it is possible to introduce a notion of differentiability for multiple valued functions. In this case, we prove that the function g can be constructed in such a way to preserve C k,α regularity. Some related problems are also discussed.

Citations

10 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

48 downloads since deposited on 17 Sep 2010
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Uncontrolled Keywords:modulus of continuity; differentiability
Language:English
Date:2004
Deposited On:17 Sep 2010 07:26
Last Modified:05 May 2016 07:51
Publisher:Springer
ISSN:0373-3114
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:https://doi.org/10.1007/s10231-003-0081-5
Related URLs:http://www.ams.org/mathscinet-getitem?mr=2044333
Permanent URL: https://doi.org/10.5167/uzh-21813

Download

[img]
Preview
Filetype: PDF (Preprint)
Size: 232kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations