UZH-Logo

Maintenance Infos

Localization-delocalization phenomena for random interfaces


Bolthausen, E (2002). Localization-delocalization phenomena for random interfaces. In: Tatsien, L. Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002). Beijing: Higher Education Press, 25-39.

Abstract

We consider d-dimensional random surface models which for d=1 are the standard (tied-down) random walks (considered as a random ``string''). In higher dimensions, the one-dimensional (discrete) time parameter of the random walk is replaced by the d-dimensional lattice \Z^d, or a finite subset of it. The random surface is represented by real-valued random variables \phi_i, where i is in \Z^d. A class of natural generalizations of the standard random walk are gradient models whose laws are (formally) expressed as
P(d\phi) = 1/Z \exp[-\sum_{|i-j|=1}V(\phi_i-\phi_j)] \prod_i d\phi_i,

V:\R -> R^+ convex, and with some growth conditions. Such surfaces have been

introduced in theoretical physics as (simplified) models for random interfaces separating different phases. Of particular interest are localization-delocalization phenomena, for instance for a surface interacting with a wall by attracting or repulsive interactions, or both together. Another example are so-called heteropolymers which have a noise-induced interaction. Recently, there had been developments of new probabilistic tools for such problems. Among them are: o Random walk representations of Helffer-Sjöstrand type, o Multiscale analysis, o Connections with random trapping problems and large deviations We give a survey of some of these developments.

We consider d-dimensional random surface models which for d=1 are the standard (tied-down) random walks (considered as a random ``string''). In higher dimensions, the one-dimensional (discrete) time parameter of the random walk is replaced by the d-dimensional lattice \Z^d, or a finite subset of it. The random surface is represented by real-valued random variables \phi_i, where i is in \Z^d. A class of natural generalizations of the standard random walk are gradient models whose laws are (formally) expressed as
P(d\phi) = 1/Z \exp[-\sum_{|i-j|=1}V(\phi_i-\phi_j)] \prod_i d\phi_i,

V:\R -> R^+ convex, and with some growth conditions. Such surfaces have been

introduced in theoretical physics as (simplified) models for random interfaces separating different phases. Of particular interest are localization-delocalization phenomena, for instance for a surface interacting with a wall by attracting or repulsive interactions, or both together. Another example are so-called heteropolymers which have a noise-induced interaction. Recently, there had been developments of new probabilistic tools for such problems. Among them are: o Random walk representations of Helffer-Sjöstrand type, o Multiscale analysis, o Connections with random trapping problems and large deviations We give a survey of some of these developments.

Altmetrics

Downloads

88 downloads since deposited on 27 Apr 2010
49 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Book Section, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Uncontrolled Keywords:random string; lattice; gradient model
Language:English
Date:2002
Deposited On:27 Apr 2010 06:34
Last Modified:05 Apr 2016 13:25
Publisher:Higher Education Press
ISBN:7-04-008690-5
Official URL:http://www.hep.edu.cn/cooperate/order/4.htm
Related URLs:http://www.ams.org/mathscinet-getitem?mr=1957516
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1006.60099
Permanent URL: https://doi.org/10.5167/uzh-21926

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations