**Chipot, M (2002). ℓ goes to plus infinity. Basel. ISBN 3-7643-6646-X.**

Full text not available from this repository.

## Abstract

Many physical problems are meaningfully formulated in a cylindrical domain. When the size of the cylinder goes to infinity, the solutions, under certain symmetry conditions, are expected to be identical in every cross-section of the domain. The proof of this, however, is sometimes difficult and almost never given in the literature. The present book partially fills this gap by providing proofs of the asymptotic behaviour of solutions to various important cases of linear and nonlinear problems in the theory of elliptic and parabolic partial differential equations.

The book is a valuable resource for graduates and researchers in applied mathematics and for engineers. Many results presented here are original and have not been published elsewhere. They will motivate and enable the reader to apply the theory to other problems in partial differential equations.

Other titles: | Birkhäuser Advanced Texts: Basel Textbooks |
---|---|

Item Type: | Monograph |

Communities & Collections: | 07 Faculty of Science > Institute of Mathematics |

DDC: | 510 Mathematics |

Uncontrolled Keywords: | Elliptic equations |

Language: | English |

Date: | 2002 |

Deposited On: | 08 Dec 2009 13:39 |

Last Modified: | 22 Apr 2013 12:55 |

Publisher: | Birkhäuser Verlag |

Series Name: | Birkhäuser Advanced Texts: Basler Lehrbücher. |

Number of Pages: | 181 |

ISBN: | 3-7643-6646-X |

Official URL: | http://www.springer.com/birkhauser/mathematics/book/978-3-7643-6646-9 |

Related URLs: | http://www.ams.org/mathscinet-getitem?mr=1999898 |

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page