**Kappeler, T (2002). Perturbations of the harmonic map equation. In: Journées "Équations aux Dérivées Partielles" (Forges-les-Eaux, 2002). Nantes, Ex No. IX, 8. ISBN 2-86939-188-9.**

Full text not available from this repository.

## Abstract

We consider perturbations of the harmonic map equation in the case where the source and target manifolds are closed Riemannian manifolds and the latter is, in addition, of nonpositive sectional curvature. For any semilinear and, under some extra conditions, quasilinear perturbation, the space of classical solutions within a homotopy class is proved to be compact. For generic perturbations the set of solutions is finite and we present a count of this set. An important ingredient for our analysis is a new inequality for maps in a given homotopy class which can be viewed as a version of the Poincaré inequality for such maps.

Item Type: | Book Section, refereed, original work |
---|---|

Communities & Collections: | 07 Faculty of Science > Institute of Mathematics |

DDC: | 510 Mathematics |

Language: | English |

Date: | 2002 |

Deposited On: | 18 Feb 2010 13:14 |

Last Modified: | 04 Apr 2012 12:55 |

Publisher: | University of Nantes |

ISBN: | 2-86939-188-9 |

Free access at: | Official URL. An embargo period may apply. |

Official URL: | http://www.math.sciences.univ-nantes.fr/edpa/2002/pdf/kapp.pdf |

Related URLs: | http://www.ams.org/mathscinet-getitem?mr=1968205 |

Citations: | Google Scholar™ |

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page