Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Kappeler, T (2002). Perturbations of the harmonic map equation. In: Journées "Équations aux Dérivées Partielles" (Forges-les-Eaux, 2002). Nantes: University of Nantes, Ex No. IX, 8.

Full text not available from this repository.


We consider perturbations of the harmonic map equation in the case where the source and target manifolds are closed Riemannian manifolds and the latter is, in addition, of nonpositive sectional curvature. For any semilinear and, under some extra conditions, quasilinear perturbation, the space of classical solutions within a homotopy class is proved to be compact. For generic perturbations the set of solutions is finite and we present a count of this set. An important ingredient for our analysis is a new inequality for maps in a given homotopy class which can be viewed as a version of the Poincaré inequality for such maps.


Additional indexing

Item Type:Book Section, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Deposited On:18 Feb 2010 13:14
Last Modified:05 Apr 2016 13:25
Publisher:University of Nantes
Free access at:Official URL. An embargo period may apply.
Official URL:http://www.math.sciences.univ-nantes.fr/edpa/2002/pdf/kapp.pdf
Related URLs:http://www.ams.org/mathscinet-getitem?mr=1968205

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page