Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Lupascu, P (2002). The Seiberg-Witten equations on Hermitian surfaces. Mathematische Nachrichten, 242:132-147.

Full text not available from this repository.

Abstract

We study the Seiberg-Witten equations on an arbitrary compact complex surface endowed with a Hermitian metric. We obtain a description of the moduli space of solutions in terms of effective divisors on the surface. This result was proved previously in [OT1] in the kähler context. Using concrete examples, we also point out some major differences between the Seiberg-Witten moduli spaces on Kähler resp. non-Kähler surfaces.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
DDC:510 Mathematics
Uncontrolled Keywords:Seiberg-Witten equations;Kobayashi-Hitchin correspondence
Language:English
Date:2002
Deposited On:29 Nov 2010 17:27
Last Modified:28 Nov 2013 02:11
Publisher:Wiley-Blackwell
ISSN:0025-584X
Publisher DOI:10.1002/1522-2616(200207)242:1<132::AID-MANA132>3.0.CO;2-A
Related URLs:http://www.ams.org/mathscinet-getitem?mr=1916854
http://www.zentralblatt-math.org/zbmath/search/?q=an%3A0993.57016
Citations:Web of Science®
Google Scholar™

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page