UZH-Logo

Maintenance Infos

Arnold-type invariants of wave fronts on surfaces


Tchernov, V (2002). Arnold-type invariants of wave fronts on surfaces. Topology, 41(1):1-45.

Abstract

Recently, Arnold's St and J± invariants of generic planar curves have been generalized to the case of generic planar wave fronts. We generalize these invariants to the case of wave fronts on an arbitrary surface F. All invariants satisfying the axioms which naturally generalize the axioms used by Arnold are explicitly described. We also give an explicit formula for the finest order one J+-type invariant of fronts on an orientable surface F≠S2. We obtain necessary and sufficient conditions for an invariant of nongeneric fronts with one nongeneric singular point to be the Vassiliev-type derivative of an invariant of generic fronts. As a byproduct, we calculate all homotopy groups of the space of Legendrian immersions of S1 into the spherical cotangent bundle of a surface.

Recently, Arnold's St and J± invariants of generic planar curves have been generalized to the case of generic planar wave fronts. We generalize these invariants to the case of wave fronts on an arbitrary surface F. All invariants satisfying the axioms which naturally generalize the axioms used by Arnold are explicitly described. We also give an explicit formula for the finest order one J+-type invariant of fronts on an orientable surface F≠S2. We obtain necessary and sufficient conditions for an invariant of nongeneric fronts with one nongeneric singular point to be the Vassiliev-type derivative of an invariant of generic fronts. As a byproduct, we calculate all homotopy groups of the space of Legendrian immersions of S1 into the spherical cotangent bundle of a surface.

Citations

3 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

49 downloads since deposited on 29 Nov 2010
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Language:English
Date:2002
Deposited On:29 Nov 2010 16:27
Last Modified:05 Apr 2016 13:25
Publisher:Elsevier
ISSN:0040-9383
Publisher DOI:https://doi.org/10.1016/S0040-9383(00)00013-6
Related URLs:http://www.zentralblatt-math.org/zbmath/search/?q=an%3A1017.57006
http://www.ams.org/mathscinet-getitem?mr=1871239
Permanent URL: https://doi.org/10.5167/uzh-21970

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 652kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations