We consider a positively graded noetherian domain $R = \bigoplus_{n \in \BN_{0}} R_{n}$ for which $R_{0}$ is essentially of finite type over a perfect field $K$ of positive characteristic and we assume that the generic fibre of the natural morphism $\pi : Y = \Proj(R) \to Y_{0} = \Spec(R_{0})$ is geometrically connected, geometrically normal and of dimension $> 1$. Then we give bounds on the "ranks" of the $n$-th homogeneous part $H^{2}_{R_{+}} (R)_{n}$ of the second local cohomology module of $R$ with respect to $R_{+} := \bigoplus_{m > 0} R_{m}$ for $n < 0$. If $Y$ is in addition normal, we shall see that the $R_{0}$-modules $H^{2}_{R_{+}} (R)_{n}$ are torsion-free for all $n < 0$ and in this case our bounds on the ranks furnish a vanishing result. From these results we get bounds on the first cohomology of ample invertible sheaves in positive characteristic.

## ZORA Wartung

ZORA's new graphical user interface has been launched. For further infos take a look at Open Access Blog 'New Look & Feel – ZORA goes mobile'.

Albertini, C; Brodmann, M (2001). *A bound on certain local cohomology modules and application to ample divisors.* Nagoya Mathematical Journal, 163:87-106.

## Abstract

We consider a positively graded noetherian domain $R = \bigoplus_{n \in \BN_{0}} R_{n}$ for which $R_{0}$ is essentially of finite type over a perfect field $K$ of positive characteristic and we assume that the generic fibre of the natural morphism $\pi : Y = \Proj(R) \to Y_{0} = \Spec(R_{0})$ is geometrically connected, geometrically normal and of dimension $> 1$. Then we give bounds on the "ranks" of the $n$-th homogeneous part $H^{2}_{R_{+}} (R)_{n}$ of the second local cohomology module of $R$ with respect to $R_{+} := \bigoplus_{m > 0} R_{m}$ for $n < 0$. If $Y$ is in addition normal, we shall see that the $R_{0}$-modules $H^{2}_{R_{+}} (R)_{n}$ are torsion-free for all $n < 0$ and in this case our bounds on the ranks furnish a vanishing result. From these results we get bounds on the first cohomology of ample invertible sheaves in positive characteristic.

## Citations

## Downloads

## Additional indexing

Item Type: | Journal Article, refereed, original work |
---|---|

Communities & Collections: | 07 Faculty of Science > Institute of Mathematics |

Dewey Decimal Classification: | 510 Mathematics |

Uncontrolled Keywords: | Kodaira vanishing theorem; graded domain |

Language: | English |

Date: | 2001 |

Deposited On: | 27 May 2010 16:11 |

Last Modified: | 05 Apr 2016 13:25 |

Publisher: | Nagoya Daigaku |

ISSN: | 0027-7630 |

Official URL: | http://www.math.nagoya-u.ac.jp/en/journal/data/2001.html#163 |

Related URLs: | http://projecteuclid.org/euclid.nmj/1114631622 http://www.ams.org/mathscinet-getitem?mr=1854390 http://www.zentralblatt-math.org/zbmath/search/?q=an%3A1011.13011 |

## Download

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.

You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.