We characterize the duals and biduals of the $L^p$-analogues $\mathcal{N}_\alpha^p$ of the standard Nevanlinna classes $\mathcal{N}_\alpha$, $\alpha\ge-1$ and $1\le p\lt \infty$. We adopt the convention to take $\mathcal{N}_{-1}^p$ to be the classical Smirnov class $\mathcal{N}^+$ for $p=1$, and the Hardy–Orlicz space $LH^p$ $(=(\text{Log}^+H)^p)$ for $1\lt p\lt\infty$. Our results generalize and unify earlier characterizations obtained by Eoff for $\alpha=0$ and $\alpha=-1$, and by Yanigahara for the Smirnov class.

Each $\mathcal{N}_\alpha^p$ is a complete metrizable topological vector space (in fact, even an algebra); it fails to be locally bounded and locally convex but admits a separating dual. Its bidual will be identified with a specific nuclear power series space of finite type; this turns out to be the ‘Fréchet envelope’ of $\mathcal{N}_\alpha^p$ as well.

The generating sequence of this power series space is of the form $(n^\theta)_{n\in\mathbb{N}}$ for some $0\lt\theta\lt1$. For example, the $\theta$s in the interval $(\smfr12,1)$ correspond in a bijective fashion to the Nevanlinna classes $\mathcal{N}_\alpha$, $\alpha\gt-1$, whereas the $\theta$s in the interval $(0,\smfr12)$ correspond bijectively to the Hardy–Orlicz spaces $LH^p$, $1\lt p\lt \infty$. By the work of Yanagihara, $\theta=\smfr12$ corresponds to $\mathcal{N}^+$.

As in the work by Yanagihara, we derive our results from characterizations of coefficient multipliers from $\mathcal{N}_\alpha^p$ into various smaller classical spaces of analytic functions on $\Delta$.

Jarchow, H; Montesinos, V; Wirths, K; Xiao, J (2001). *Duality for some large spaces of analytic functions.* Proceedings of the Edinburgh Mathematical Society (Series 2), 44(3):571-583.

## Abstract

We characterize the duals and biduals of the $L^p$-analogues $\mathcal{N}_\alpha^p$ of the standard Nevanlinna classes $\mathcal{N}_\alpha$, $\alpha\ge-1$ and $1\le p\lt \infty$. We adopt the convention to take $\mathcal{N}_{-1}^p$ to be the classical Smirnov class $\mathcal{N}^+$ for $p=1$, and the Hardy–Orlicz space $LH^p$ $(=(\text{Log}^+H)^p)$ for $1\lt p\lt\infty$. Our results generalize and unify earlier characterizations obtained by Eoff for $\alpha=0$ and $\alpha=-1$, and by Yanigahara for the Smirnov class.

Each $\mathcal{N}_\alpha^p$ is a complete metrizable topological vector space (in fact, even an algebra); it fails to be locally bounded and locally convex but admits a separating dual. Its bidual will be identified with a specific nuclear power series space of finite type; this turns out to be the ‘Fréchet envelope’ of $\mathcal{N}_\alpha^p$ as well.

The generating sequence of this power series space is of the form $(n^\theta)_{n\in\mathbb{N}}$ for some $0\lt\theta\lt1$. For example, the $\theta$s in the interval $(\smfr12,1)$ correspond in a bijective fashion to the Nevanlinna classes $\mathcal{N}_\alpha$, $\alpha\gt-1$, whereas the $\theta$s in the interval $(0,\smfr12)$ correspond bijectively to the Hardy–Orlicz spaces $LH^p$, $1\lt p\lt \infty$. By the work of Yanagihara, $\theta=\smfr12$ corresponds to $\mathcal{N}^+$.

As in the work by Yanagihara, we derive our results from characterizations of coefficient multipliers from $\mathcal{N}_\alpha^p$ into various smaller classical spaces of analytic functions on $\Delta$.

## Citations

## Altmetrics

## Downloads

## Additional indexing

Item Type: | Journal Article, refereed, original work |
---|---|

Communities & Collections: | 07 Faculty of Science > Institute of Mathematics |

Dewey Decimal Classification: | 510 Mathematics |

Uncontrolled Keywords: | coefficient multipliers; weighted area Nevanlinna classes; weighted Bergman spaces; nuclear power series spaces |

Language: | English |

Date: | 2001 |

Deposited On: | 29 Nov 2010 16:27 |

Last Modified: | 05 Apr 2016 13:25 |

Publisher: | UNSPECIFIED |

ISSN: | 0013-0915 |

Additional Information: | Copyright: Cambridge University Press |

Publisher DOI: | https://doi.org/10.1017/S0013091599001042 |

Related URLs: | http://www.ams.org/mathscinet-getitem?mr=1875769 http://www.zentralblatt-math.org/zbmath/search/?q=an%3A1001.46014 |

## Download

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.

You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.