# Graham, I; Hackbusch, W; Sauter, S (2000). *Hybrid Galerkin boundary elements on degenerate meshes.* In: Bonnet, M; Sändig, A M; Wendland, W L. Mathematical aspects of boundary element methods (Palaiseau 1998). Boca Raton, FL, 140-151. ISBN 1-58488-006-6.

Full text not available from this repository.

## Abstract

In recent work ["Discrete boundary element methods on general meshes in 3D", Bath Mathematics Preprint No. 97/19, Univ. Bath, Bath, 1997; "Hybrid Galerkin boundary elements: theory and implementation", Preprint No. 98-6, Univ. Kiel, Kiel, 1998] we have presented a new discretisation scheme for boundary integral equations which has the same energy norm stability and convergence properties as the Galerkin method but has a complexity comparable with discrete collocation or Nyström methods. Our results were for non-quasiuniform but nevertheless shape-regular meshes. Here we extend the theory to much more general meshes, including the degenerate meshes commonly used to handle singularities arising from corners and edges in 3D applications. As an application we give numerical results for the classical problem of computing the capacitance of a two-dimensional plate in R3. These show that the method is capable of attaining the same type of complexity reduction for singular problems as was already attained for smooth applications in [I. G. Graham, W. Hackbusch and S. A. Sauter, op. cit., 1998].

## Citations | ## Downloads0 downloads since deposited on 29 Nov 2010 0 downloads since 12 months |

## Additional indexing

Other titles: | Dedicated to Vladimir Mazʹya on the occasion of his 60th birthday. Proceedings of the minisymposium held at the École Polytechnique, Palaiseau, May 25–29, 1998 |
---|---|

Item Type: | Book Section, refereed, original work |

Communities & Collections: | 07 Faculty of Science > Institute of Mathematics |

DDC: | 510 Mathematics |

Language: | English |

Date: | 2000 |

Deposited On: | 29 Nov 2010 16:27 |

Last Modified: | 27 Nov 2013 21:09 |

Publisher: | Chapman & Hall/CRC |

Series Name: | Chapman & Hall/CRC Research Notes in Mathematics |

Number: | 414 |

ISBN: | 1-58488-006-6 |

Official URL: | http://www.crcpress.com/product/isbn/9781584880066 |

Related URLs: | http://www.ams.org/mathscinet-getitem?mr=1719856 http://www.zentralblatt-math.org/zbmath/search/?q=an%3A0937.65127 |

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page