UZH-Logo

An inexpensive device for non-invasive electroretinography in small aquatic vertebrates.


Makhankov, Y V; Rinner, O; Neuhauss, S C F (2004). An inexpensive device for non-invasive electroretinography in small aquatic vertebrates. Journal of Neuroscience Methods, 135(1-2):205-210.

Abstract

Electroretinographic (ERG) method records a sum field potential of the retina in response to light. It mainly arises in the outer retina and is used as a non-invasive measure in both animal experiments and the clinic. Since it is a comprehensive method to assess outer retinal function, it is becoming increasingly useful in genetic studies of vision. Here we present a simple in-house built setup to measure ERGs of aquatic vertebrates. We have used this setup to efficiently and reliably measure intact larvae of zebrafish (Danio rerio), Medaka fish (Oryzias latipes), and Xenopus laevis tadpoles. By slight modification of the setup, we were also able to measure adult zebrafish and Medaka, demonstrating the general versatility of the setup. We picked these organisms since they are increasingly used to study visual function with genetic means. This setup is easily built and will be particularly useful for laboratories setting up ERG measurements as a complement to their genetic studies.

Electroretinographic (ERG) method records a sum field potential of the retina in response to light. It mainly arises in the outer retina and is used as a non-invasive measure in both animal experiments and the clinic. Since it is a comprehensive method to assess outer retinal function, it is becoming increasingly useful in genetic studies of vision. Here we present a simple in-house built setup to measure ERGs of aquatic vertebrates. We have used this setup to efficiently and reliably measure intact larvae of zebrafish (Danio rerio), Medaka fish (Oryzias latipes), and Xenopus laevis tadpoles. By slight modification of the setup, we were also able to measure adult zebrafish and Medaka, demonstrating the general versatility of the setup. We picked these organisms since they are increasingly used to study visual function with genetic means. This setup is easily built and will be particularly useful for laboratories setting up ERG measurements as a complement to their genetic studies.

Citations

29 citations in Web of Science®
29 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

116 downloads since deposited on 11 Feb 2008
24 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:30 May 2004
Deposited On:11 Feb 2008 12:13
Last Modified:05 Apr 2016 12:13
Publisher:Elsevier
ISSN:0165-0270
Publisher DOI:10.1016/j.jneumeth.2003.12.015
PubMed ID:15020104
Permanent URL: http://doi.org/10.5167/uzh-221

Download

[img]
Preview
Filetype: PDF
Size: 191kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations