UZH-Logo

Maintenance Infos

Line energies for gradient vector fields in the plane


Ambrosio, L; De Lellis, C; Mantegazza, C (1999). Line energies for gradient vector fields in the plane. Calculus of Variations and Partial Differential Equations, 9(4):327-255.

Abstract

In this paper we study the singular perturbation of by . This problem, which could be thought as the natural second order version of the classical singular perturbation of the potential energy by , leads, as in the first order case, to energy concentration effects on hypersurfaces. In the two dimensional case we study the natural domain for the limiting energy and prove a compactness theorem in this class.

In this paper we study the singular perturbation of by . This problem, which could be thought as the natural second order version of the classical singular perturbation of the potential energy by , leads, as in the first order case, to energy concentration effects on hypersurfaces. In the two dimensional case we study the natural domain for the limiting energy and prove a compactness theorem in this class.

Citations

55 citations in Web of Science®
59 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Uncontrolled Keywords:singular perturbation problems; energy concentration effects; eikonal equation; integral functional
Language:English
Date:1999
Deposited On:29 Nov 2010 16:27
Last Modified:05 Apr 2016 13:26
Publisher:Springer
ISSN:0944-2669
Publisher DOI:10.1007/s005260050144
Related URLs:http://www.ams.org/mathscinet-getitem?mr=1731470

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations