UZH-Logo

Maintenance Infos

Compound Poisson approximation in total variation


Barbour, A D; Utev, S (1999). Compound Poisson approximation in total variation. Stochastic Processes and their Applications, 82(1):89-125.

Abstract

Poisson approximation in total variation can be successfully established in a wide variety of contexts, involving sums of weakly dependent random variables which usually take the value 0, and occasionally the value 1. If the random variables can take other positive integer values, or if there is stronger dependence between them, compound Poisson approximation may be more suitable. Stein's method, which is so effective in the Poisson context, turns out to be much more difficult to apply for compound Poisson approximation, because the solutions of the Stein equation have undesirable properties. In this paper, we prove new bounds on the absolute values of the solutions to the Stein equation and of their first differences, over certain ranges of their arguments. These enable compound Poisson approximation in total variation to be carried out with almost the same efficiency as in the Poisson case. Even for sums of independent random variables, which have been exhaustively studied in the past, new results are obtained, effectively solving a problem discussed by Le Cam (1965, Bernoulli, Bayes, Laplace. Springer, New York, pp. 179–202), in the context of nonnegative integer valued random variables.

Abstract

Poisson approximation in total variation can be successfully established in a wide variety of contexts, involving sums of weakly dependent random variables which usually take the value 0, and occasionally the value 1. If the random variables can take other positive integer values, or if there is stronger dependence between them, compound Poisson approximation may be more suitable. Stein's method, which is so effective in the Poisson context, turns out to be much more difficult to apply for compound Poisson approximation, because the solutions of the Stein equation have undesirable properties. In this paper, we prove new bounds on the absolute values of the solutions to the Stein equation and of their first differences, over certain ranges of their arguments. These enable compound Poisson approximation in total variation to be carried out with almost the same efficiency as in the Poisson case. Even for sums of independent random variables, which have been exhaustively studied in the past, new results are obtained, effectively solving a problem discussed by Le Cam (1965, Bernoulli, Bayes, Laplace. Springer, New York, pp. 179–202), in the context of nonnegative integer valued random variables.

Citations

15 citations in Web of Science®
15 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 04 Nov 2009
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Language:English
Date:July 1999
Deposited On:04 Nov 2009 16:06
Last Modified:05 Apr 2016 13:26
Publisher:Elsevier
ISSN:0304-4149
Publisher DOI:https://doi.org/10.1016/S0304-4149(99)00004-6
Related URLs:http://www.ams.org/mathscinet-getitem?mr=1695071

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations