We study the differential geometry of principal G-bundles whose base space is the space of free paths (loops) on a manifold M. In particular we consider connections defined in terms of pairs (A,B), where A is a connection for a fixed principal bundle P(M,G) and B is a 2-form on M. The relevant curvatures, parallel transports and holonomies are computed and their expressions in local coordinates are exhibited. When the 2-form B is given by the curvature of A, then the so-called non-abelian Stokes formula follows.

For a generic 2-form B, we distinguish the cases when the parallel transport depends on the whole path of paths and when it depends only on the spanned surface. In particular we discuss generalizations of the non-abelian Stokes formula. We study also the invariance properties of the (trace of the) holonomy under suitable transformation groups acting on the pairs (A,B).

In this way we are able to define observables for both topological and non-topological quantum field theories of the BF type. In the non-topological case, the surface terms may be relevant for the understanding of the quark-confinement problem. In the topological case the (perturbative) four-dimensional quantum BF-theory is expected to yield invariants of imbedded (or immersed) surfaces in a 4-manifold M.

## ZORA Wartung

ZORA's new graphical user interface has been launched. For further infos take a look at Open Access Blog 'New Look & Feel – ZORA goes mobile'.

Cattaneo, A S; Cotta-Ramusino, P; Rinaldi, M (1999). *Loop and path spaces and four-dimensional BF theories: connections, holonomies and observables.* Communications in Mathematical Physics, 204(3):493-524.

## Abstract

We study the differential geometry of principal G-bundles whose base space is the space of free paths (loops) on a manifold M. In particular we consider connections defined in terms of pairs (A,B), where A is a connection for a fixed principal bundle P(M,G) and B is a 2-form on M. The relevant curvatures, parallel transports and holonomies are computed and their expressions in local coordinates are exhibited. When the 2-form B is given by the curvature of A, then the so-called non-abelian Stokes formula follows.

For a generic 2-form B, we distinguish the cases when the parallel transport depends on the whole path of paths and when it depends only on the spanned surface. In particular we discuss generalizations of the non-abelian Stokes formula. We study also the invariance properties of the (trace of the) holonomy under suitable transformation groups acting on the pairs (A,B).

In this way we are able to define observables for both topological and non-topological quantum field theories of the BF type. In the non-topological case, the surface terms may be relevant for the understanding of the quark-confinement problem. In the topological case the (perturbative) four-dimensional quantum BF-theory is expected to yield invariants of imbedded (or immersed) surfaces in a 4-manifold M.

## Citations

## Altmetrics

## Downloads

## Additional indexing

Item Type: | Journal Article, refereed, original work |
---|---|

Communities & Collections: | 07 Faculty of Science > Institute of Mathematics |

Dewey Decimal Classification: | 510 Mathematics |

Language: | English |

Date: | 1999 |

Deposited On: | 27 Jan 2010 12:09 |

Last Modified: | 05 Apr 2016 13:26 |

Publisher: | Springer |

ISSN: | 0010-3616 |

Publisher DOI: | 10.1007/s002200050655 |

## Download

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.

You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.