UZH-Logo

Canonical rational equivalence of intersections of divisors


Kresch, A (1999). Canonical rational equivalence of intersections of divisors. Inventiones Mathematicae, 136(3):483-496.

Abstract

We consider the operation of intersecting with a locally principal Cartier divisor (i.e., a Cartier divisor which is principal on some neighborhood of its support). We describe this operation explicitly on the level of cycles and rational equivalences and as a corollary obtain a formula for rational equivalence between intersections of two locally principal Cartier divisors. Such canonical rational equivalence applies quite naturally to the setting of algebraic stacks. We present two applications: (i) a simplification of the development of Fulton-MacPherson-style intersection theory on Deligne-Mumford stacks, and (ii) invariance of a key rational equivalence under a certain group action (which is used in developing the theory of virtual fundamental classes via intrinsic normal cones).

We consider the operation of intersecting with a locally principal Cartier divisor (i.e., a Cartier divisor which is principal on some neighborhood of its support). We describe this operation explicitly on the level of cycles and rational equivalences and as a corollary obtain a formula for rational equivalence between intersections of two locally principal Cartier divisors. Such canonical rational equivalence applies quite naturally to the setting of algebraic stacks. We present two applications: (i) a simplification of the development of Fulton-MacPherson-style intersection theory on Deligne-Mumford stacks, and (ii) invariance of a key rational equivalence under a certain group action (which is used in developing the theory of virtual fundamental classes via intrinsic normal cones).

Citations

13 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

16 downloads since deposited on 29 Nov 2010
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Language:English
Date:1999
Deposited On:29 Nov 2010 16:27
Last Modified:05 Apr 2016 13:26
Publisher:Springer
ISSN:0020-9910
Publisher DOI:Canonical rational equivalence of intersections of divisors
Related URLs:http://arxiv.org/abs/alg-geom/9710011
Permanent URL: http://doi.org/10.5167/uzh-22142

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 154kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations