The classical action for pure Yang-Mills gauge theory can be formulated as a deformation of the topological BF theory where, beside the two-form field B, one has to add one extra-field m given by a one-form which transforms as the difference of two connections. The ensuing action functional gives a theory that is both classically and quantistically equivalent to the original Yang-Mills theory. In order to prove such an equivalence, it is shown that the dependency on the field m can be gauged away completely. This gives rise to a field theory that, for this reason, can be considered as semi-topological or topological in some but not all the fields of the theory. The symmetry group involved in this theory is an affine extension of the tangent gauge group acting on the tangent bundle of the space of connections. A mathematical analysis of this group action and of the relevant BRST complex is discussed in detail.

## ZORA Wartung

ZORA's new graphical user interface has been launched. For further infos take a look at Open Access Blog 'New Look & Feel – ZORA goes mobile'.

Cattaneo, A S; Cotta-Ramusino, P; Fucito, F; Martellini, M; Rinaldi, M; Tanzini, A; Zeni, M (1998). *Four-dimensional Yang-Mills theory as a deformation of topological BF theory.* Communications in Mathematical Physics, 197(3):571-621.

## Abstract

The classical action for pure Yang-Mills gauge theory can be formulated as a deformation of the topological BF theory where, beside the two-form field B, one has to add one extra-field m given by a one-form which transforms as the difference of two connections. The ensuing action functional gives a theory that is both classically and quantistically equivalent to the original Yang-Mills theory. In order to prove such an equivalence, it is shown that the dependency on the field m can be gauged away completely. This gives rise to a field theory that, for this reason, can be considered as semi-topological or topological in some but not all the fields of the theory. The symmetry group involved in this theory is an affine extension of the tangent gauge group acting on the tangent bundle of the space of connections. A mathematical analysis of this group action and of the relevant BRST complex is discussed in detail.

## Citations

## Altmetrics

## Downloads

## Additional indexing

Item Type: | Journal Article, refereed, original work |
---|---|

Communities & Collections: | 07 Faculty of Science > Institute of Mathematics |

Dewey Decimal Classification: | 510 Mathematics |

Language: | English |

Date: | 1998 |

Deposited On: | 24 Mar 2010 15:52 |

Last Modified: | 05 Apr 2016 13:26 |

Publisher: | Springer |

ISSN: | 0010-3616 |

Publisher DOI: | 10.1007/s002200050465 |

## Download

| Content: Accepted Version Filetype: PDF Size: 1MB View at publisher |

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.

You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.