UZH-Logo

Maintenance Infos

Mutations affecting development of the zebrafish retina.


Malicki, J; Neuhauss, S C F; Schier, A F; Solnica-Krezel, L; Stemple, D L; Stainier, D Y; Abdelilah, S; Zwartkruis, F J T; Rangini, Z; Driever, W (1996). Mutations affecting development of the zebrafish retina. Development, 123(UNSPEC):263-273.

Abstract

In a large scale screen for genetic defects in zebrafish embryogenesis we identified 49 mutations affecting development of the retina. Based on analysis of living embryos as well as histological sections, we grouped the isolated mutations into six phenotypic categories. (1) Mutations in three loci result in a loss of wild-type laminar pattern of the neural retina. (2) Defects in four loci lead to an abnormal specification of the eye anlagen. Only one eye frequently forms in this class of mutants. (3) Seven loci predominantly affect development of the outer retinal layers. Mutants in this category display cell loss mainly in the photoreceptor cell layer. (4) Nine mutations cause retardation of eye growth without any other obvious abnormalities in the retina. (5) A group of twelve mutations is characterized by nonspecific retinal degeneration. (6) Four mutations display retinal degeneration associated with a pigmentation defect. Finally, two mutations, one with absence of the ventral retina and one with an eye-specific pigmentation defect, are not classified in any of the above groups. The identified mutations affect numerous aspects of eye development, including: specification of the eye anlage, growth rate of the optic cup, establishment of retinal stratification, specification or differentiation of retinal neurons and formation of the dorsoventral axis in the developing eye.

In a large scale screen for genetic defects in zebrafish embryogenesis we identified 49 mutations affecting development of the retina. Based on analysis of living embryos as well as histological sections, we grouped the isolated mutations into six phenotypic categories. (1) Mutations in three loci result in a loss of wild-type laminar pattern of the neural retina. (2) Defects in four loci lead to an abnormal specification of the eye anlagen. Only one eye frequently forms in this class of mutants. (3) Seven loci predominantly affect development of the outer retinal layers. Mutants in this category display cell loss mainly in the photoreceptor cell layer. (4) Nine mutations cause retardation of eye growth without any other obvious abnormalities in the retina. (5) A group of twelve mutations is characterized by nonspecific retinal degeneration. (6) Four mutations display retinal degeneration associated with a pigmentation defect. Finally, two mutations, one with absence of the ventral retina and one with an eye-specific pigmentation defect, are not classified in any of the above groups. The identified mutations affect numerous aspects of eye development, including: specification of the eye anlage, growth rate of the optic cup, establishment of retinal stratification, specification or differentiation of retinal neurons and formation of the dorsoventral axis in the developing eye.

Citations

198 citations in Web of Science®
182 citations in Scopus®
Google Scholar™

Downloads

79 downloads since deposited on 11 Feb 2008
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 December 1996
Deposited On:11 Feb 2008 12:13
Last Modified:05 Apr 2016 12:13
Publisher:Company of Biologists
ISSN:0950-1991
PubMed ID:9007246
Permanent URL: http://doi.org/10.5167/uzh-224

Download

[img]
Preview
Filetype: PDF
Size: 753kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations