We consider the Hopfield model with n neurons and an increasing number $p = p(n)$ of randomly chosen patterns. Under the condition $(p^3 \log p)/n \to 0$, we prove for every fixed choice of overlap parameters a central limit theorem as $n \to \infty$, which holds for almost all realizations of the random patterns. In the special case where the temperature is above the critical one and there is no external magnetic field, the condition $(p^2 \log p)/n \to 0$ suffices. As in the case of a finite number of patterns, the central limit theorem requires a centering which depends on the random patterns.

Gentz, B (1996). *A central limit theorem for the overlap in the Hopfield model.* The Annals of Probability, 24(4):1809-1841.

## Abstract

We consider the Hopfield model with n neurons and an increasing number $p = p(n)$ of randomly chosen patterns. Under the condition $(p^3 \log p)/n \to 0$, we prove for every fixed choice of overlap parameters a central limit theorem as $n \to \infty$, which holds for almost all realizations of the random patterns. In the special case where the temperature is above the critical one and there is no external magnetic field, the condition $(p^2 \log p)/n \to 0$ suffices. As in the case of a finite number of patterns, the central limit theorem requires a centering which depends on the random patterns.

## Citations

## Altmetrics

## Downloads

## Additional indexing

Item Type: | Journal Article, refereed, original work |
---|---|

Communities & Collections: | 07 Faculty of Science > Institute of Mathematics |

Dewey Decimal Classification: | 510 Mathematics |

Uncontrolled Keywords: | Fluctuations; Hopfield model; overlap; neural networks; Laplace's method |

Language: | English |

Date: | 1996 |

Deposited On: | 29 Nov 2010 16:28 |

Last Modified: | 05 Apr 2016 13:27 |

Publisher: | Institute of Mathematical Statistics |

ISSN: | 0091-1798 |

Publisher DOI: | https://doi.org/10.1214/aop/1041903207 |

Related URLs: | http://www.ams.org/mathscinet-getitem?mr=1415230 http://www.zentralblatt-math.org/zbmath/search/?q=an%3A0872.60015 |

## Download

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.

You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.