UZH-Logo

Retinal defects in the zebrafish bleached mutant.


Neuhauss, S C F; Seeliger, M W; Schepp, C P; Biehlmaier, O (2003). Retinal defects in the zebrafish bleached mutant. Documenta Ophthalmologica, 107(1):71-78.

Abstract

The recessive zebrafish mutant bleached has, apart from its defects in pigmentation, a heritable defect leading to larval blindness. Here, we analyze the retina of homozygous bleached larvae, employing morphological and electrophysiological methods. Electroretinography revealed a complete lack of electrical signals in response to light. Histological analysis of mutant retinae showed a severely affected outer retina with a hypopigmented pigment epithelium and a disorganized outer nuclear layer containing few or no intact photoreceptors. Using the TUNEL assay for cell death detection, we noticed a strong increase of apoptotic cells in all retinal cell layers, starting in young larvae even before retinal support of visual function. At later stages cell death is most pronounced at the marginal zone, where new cells are constantly added to the retina. At early stages increased apoptosis is mainly confined to the retina, while at later stages elevated cell death is al so apparent in extra-retinal tissues, particularly in the brain. Hence, the lack of visual responses in homozygous bleached larvae can be attributed to a severe defect of the outer retina, preceded by increased levels of apoptotic cell death in all retinal cell layers.

The recessive zebrafish mutant bleached has, apart from its defects in pigmentation, a heritable defect leading to larval blindness. Here, we analyze the retina of homozygous bleached larvae, employing morphological and electrophysiological methods. Electroretinography revealed a complete lack of electrical signals in response to light. Histological analysis of mutant retinae showed a severely affected outer retina with a hypopigmented pigment epithelium and a disorganized outer nuclear layer containing few or no intact photoreceptors. Using the TUNEL assay for cell death detection, we noticed a strong increase of apoptotic cells in all retinal cell layers, starting in young larvae even before retinal support of visual function. At later stages cell death is most pronounced at the marginal zone, where new cells are constantly added to the retina. At early stages increased apoptosis is mainly confined to the retina, while at later stages elevated cell death is al so apparent in extra-retinal tissues, particularly in the brain. Hence, the lack of visual responses in homozygous bleached larvae can be attributed to a severe defect of the outer retina, preceded by increased levels of apoptotic cell death in all retinal cell layers.

Citations

8 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 July 2003
Deposited On:11 Feb 2008 12:13
Last Modified:05 Apr 2016 12:13
Publisher:Springer
ISSN:0012-4486
Publisher DOI:10.1023/A:1024492029629
PubMed ID:12906124

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations