UZH-Logo

Maintenance Infos

Threshold phenomena in epidemic theory


Barbour, A D (1994). Threshold phenomena in epidemic theory. In: Kelly, F P. Probability, statistics and optimisation. Chichester: Wiley, 101-116.

Abstract

The threshold theorem for deterministic epidemics in mixing populations can usually be rewritten in such a form that a large epidemic results from trace infection if and only if $R_0>1$, where $R_0$ can be interpreted as a basic reproduction ratio for an associated population model. The Whittle stochastic threshold theorem replaces certainty with probability: if $R_0\leq 1$, a large epidemic is highly unlikely to result from the introduction of one or two infectives, whereas, if $R_0>1$, the probability of having a significant epidemic is no longer trivial. In this paper, the Whittle approximation to a model for parasitic infection in a mixing population is analysed. A feature of the model is that $R_0$ is well defined, but for certain parameter values the threshold is not at $R_0=1$. Thus to have $R_0=1$ as threshold for epidemics in mixing populations is by no means a universal rule. A related birth and death process with drift is also investigated.

The threshold theorem for deterministic epidemics in mixing populations can usually be rewritten in such a form that a large epidemic results from trace infection if and only if $R_0>1$, where $R_0$ can be interpreted as a basic reproduction ratio for an associated population model. The Whittle stochastic threshold theorem replaces certainty with probability: if $R_0\leq 1$, a large epidemic is highly unlikely to result from the introduction of one or two infectives, whereas, if $R_0>1$, the probability of having a significant epidemic is no longer trivial. In this paper, the Whittle approximation to a model for parasitic infection in a mixing population is analysed. A feature of the model is that $R_0$ is well defined, but for certain parameter values the threshold is not at $R_0=1$. Thus to have $R_0=1$ as threshold for epidemics in mixing populations is by no means a universal rule. A related birth and death process with drift is also investigated.

Altmetrics

Downloads

57 downloads since deposited on 09 Apr 2010
32 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Book Section, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Language:English
Date:1994
Deposited On:09 Apr 2010 09:25
Last Modified:05 Apr 2016 13:27
Publisher:Wiley
Series Name:Wiley Series in Probability and Mathematical Statistics
ISBN:0-471-94829-2
Additional Information:This is a preprint of an article published in [Barbour, A. D. Threshold phenomena in epidemic theory. Probability, statistics and optimisation, 101--116], Wiley Series in Probability and Mathematical Statistics Copyright © 1994
Related URLs:http://www.ams.org/mathscinet-getitem?mr=1320745
Permanent URL: https://doi.org/10.5167/uzh-22617

Download

[img]
Preview
Filetype: PDF
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations