For any two-dimensional Riemannian manifold (M, g) we introduce a new functional, hg, on the space of closed simple nonparametrized curves on M. This functional associates to any simple curve Γ the regularize determinant of the Laplace operator on the manifold obtained by cutting M along Γ and imposing Dirichlet boundary conditions. When M is of genus zero we derive a formula for the variation of hg, we prove that the critical points are conformal circles (i.e., the curves which, with respect to the unique metric of constant curvature 1 in the conformal class {e2αg:α C∞(S2, )} of g, have constant geodesic curvature), and that the hessian of the functional at a critical point is nondegenerate in directions normal the critical submanifold (Theorem 1.1). We also construct smooth flows on the space of nonparametrized curves retracting the space onto the critical sub-manifold and show that they are gradient-like for our function. These flows deform a given closed embedded curve on S2 to a conformal circle keeping the area of the domain bounded by each curve of the deformation constant (Theorem 1.3).

Burghelea, D; Kappeler, T; McDonald, P; Friedlander, L (1994). *On the functional logdet and related flows on the space of closed embedded curves on S².* Journal of Functional Analysis, 120(2):440-466.

## Abstract

For any two-dimensional Riemannian manifold (M, g) we introduce a new functional, hg, on the space of closed simple nonparametrized curves on M. This functional associates to any simple curve Γ the regularize determinant of the Laplace operator on the manifold obtained by cutting M along Γ and imposing Dirichlet boundary conditions. When M is of genus zero we derive a formula for the variation of hg, we prove that the critical points are conformal circles (i.e., the curves which, with respect to the unique metric of constant curvature 1 in the conformal class {e2αg:α C∞(S2, )} of g, have constant geodesic curvature), and that the hessian of the functional at a critical point is nondegenerate in directions normal the critical submanifold (Theorem 1.1). We also construct smooth flows on the space of nonparametrized curves retracting the space onto the critical sub-manifold and show that they are gradient-like for our function. These flows deform a given closed embedded curve on S2 to a conformal circle keeping the area of the domain bounded by each curve of the deformation constant (Theorem 1.3).

## Citations

## Altmetrics

## Additional indexing

Item Type: | Journal Article, refereed, original work |
---|---|

Communities & Collections: | 07 Faculty of Science > Institute of Mathematics |

Dewey Decimal Classification: | 510 Mathematics |

Language: | English |

Date: | 1994 |

Deposited On: | 18 Feb 2010 12:18 |

Last Modified: | 05 Apr 2016 13:28 |

Publisher: | Elsevier |

ISSN: | 0022-1236 |

Publisher DOI: | https://doi.org/10.1006/jfan.1994.1038 |

Related URLs: | http://www.zentralblatt-math.org/zbmath/search/?q=an%3A0805.58062 http://www.ams.org/mathscinet-getitem?mr=1266316 |

## Download

Full text not available from this repository.View at publisher

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.

You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.