UZH-Logo

On random polynomials over finite fields


Arratia, R; Barbour, A D; Tavaré, S (1993). On random polynomials over finite fields. Mathematical Proceedings of the Cambridge Philosophical Society, 114(2):347-368.

Abstract

We consider random monic polynomials of degree n over a finite field of q elements, chosen with all qn possibilities equally likely, factored into monic irreducible factors. More generally, relaxing the restriction that q be a prime power, we consider that multiset construction in which the total number of possibilities of weight n is qn. We establish various approximations for the joint distribution of factors, by giving upper bounds on the total variation distance to simpler discrete distributions. For example, the counts for particular factors are approximately independent and geometrically distributed, and the counts for all factors of sizes 1, 2, …, b, where b = O(n/log n), are approximated by independent negative binomial random variables. As another example, the joint distribution of the large factors is close to the joint distribution of the large cycles in a random permutation. We show how these discrete approximations imply a Brownian motion functional central limit theorem and a Poisson-Dirichiet limit theorem, together with appropriate error estimates. We also give Poisson approximations, with error bounds, for the distribution of the total number of factors.

We consider random monic polynomials of degree n over a finite field of q elements, chosen with all qn possibilities equally likely, factored into monic irreducible factors. More generally, relaxing the restriction that q be a prime power, we consider that multiset construction in which the total number of possibilities of weight n is qn. We establish various approximations for the joint distribution of factors, by giving upper bounds on the total variation distance to simpler discrete distributions. For example, the counts for particular factors are approximately independent and geometrically distributed, and the counts for all factors of sizes 1, 2, …, b, where b = O(n/log n), are approximated by independent negative binomial random variables. As another example, the joint distribution of the large factors is close to the joint distribution of the large cycles in a random permutation. We show how these discrete approximations imply a Brownian motion functional central limit theorem and a Poisson-Dirichiet limit theorem, together with appropriate error estimates. We also give Poisson approximations, with error bounds, for the distribution of the total number of factors.

Citations

Altmetrics

Downloads

55 downloads since deposited on 12 Feb 2010
29 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Language:English
Date:1993
Deposited On:12 Feb 2010 15:32
Last Modified:05 Apr 2016 13:28
Publisher:Cambridge University Press
ISSN:0305-0041
Additional Information:Copyright: Cambridge University Press
Publisher DOI:10.1017/S0305004100071620
Permanent URL: http://doi.org/10.5167/uzh-22660

Download

[img]
Preview
Filetype: PDF
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations