UZH-Logo

Maintenance Infos

Conformal affine Toda model of two-dimensional black holes: the end-point state and the S matrix


Belgiorno, F; Cattaneo, A S; Fucito, F; Martellini, M (1993). Conformal affine Toda model of two-dimensional black holes: the end-point state and the S matrix. Physical Review D, 48(6):2660-2669.

Abstract

In this paper we investigate a dilaton-gravity theory, which can be viewed as an SL(2) conformal affine Toda (CAT) theory. This new model is inspired by some previous work by Bilal, Callan, and de Alwis. The main results obtained in our approach are (i) a field redefinition of the CAT basis in terms of which it is possible to get the black hole solutions already known in the literature, and (ii) an investigation of the scattering matrix problem for the quantum black hole states. Given the validity of our assumptions, there is a range of values of the N free-falling shock matter fields forming the black hole solution, for which the end-point state of the black hole evaporation is a zero temperature regular remnant geometry. The quantum evolution to this final state seems to be nonunitary, in agreement with Hawking’s scenario for black hole evaporation.
© 1993 The American Physical Society

In this paper we investigate a dilaton-gravity theory, which can be viewed as an SL(2) conformal affine Toda (CAT) theory. This new model is inspired by some previous work by Bilal, Callan, and de Alwis. The main results obtained in our approach are (i) a field redefinition of the CAT basis in terms of which it is possible to get the black hole solutions already known in the literature, and (ii) an investigation of the scattering matrix problem for the quantum black hole states. Given the validity of our assumptions, there is a range of values of the N free-falling shock matter fields forming the black hole solution, for which the end-point state of the black hole evaporation is a zero temperature regular remnant geometry. The quantum evolution to this final state seems to be nonunitary, in agreement with Hawking’s scenario for black hole evaporation.
© 1993 The American Physical Society

Citations

2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

25 downloads since deposited on 23 Mar 2010
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Language:English
Date:1993
Deposited On:23 Mar 2010 08:21
Last Modified:05 Apr 2016 13:28
Publisher:American Physical Society
ISSN:1550-2368
Publisher DOI:10.1103/PhysRevD.48.2660
Permanent URL: http://doi.org/10.5167/uzh-22669

Download

[img]
Preview
Filetype: PDF
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations