UZH-Logo

Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish.


Neuhauss, S C F; Biehlmaier, O; Seeliger, M W; Das, T; Kohler, K; Harris, W A; Baier, H (1999). Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. Journal of Neuroscience, 19(19):8603-8615.

Abstract

We examined optokinetic and optomotor responses of 450 zebrafish mutants, which were isolated previously based on defects in organ formation, tissue patterning, pigmentation, axon guidance, or other visible phenotypes. These strains carry single point mutations in >400 essential loci. We asked which fraction of the mutants develop blindness or other types of impairments specific to the visual system. Twelve mutants failed to respond in either one or both of our assays. Subsequent histological and electroretinographic analysis revealed unique deficits at various stages of the visual pathway, including lens degeneration (bumper), melanin deficiency (sandy), lack of ganglion cells (lakritz), ipsilateral misrouting of axons (belladonna), optic-nerve disorganization (grumpy and sleepy), inner nuclear layer or outer plexiform layer malfunction (noir, dropje, and possibly steifftier), and disruption of retinotectal impulse activity (macho and blumenkohl). Surprisingly, mutants with abnormally large or small eyes or severe wiring defects frequently exhibit no discernible behavioral deficits. In addition, we identified 13 blind mutants that display outer-retina dystrophy, making this syndrome the single-most common cause of inherited blindness in zebrafish. Our screen showed that a significant fraction (approximately 5%) of the essential loci also participate in visual functions but did not reveal any systematic genetic linkage to particular morphological traits. The mutations uncovered by our behavioral assays provide distinct entry points for the study of visual pathways and set the stage for a genetic dissection of vertebrate vision.

We examined optokinetic and optomotor responses of 450 zebrafish mutants, which were isolated previously based on defects in organ formation, tissue patterning, pigmentation, axon guidance, or other visible phenotypes. These strains carry single point mutations in >400 essential loci. We asked which fraction of the mutants develop blindness or other types of impairments specific to the visual system. Twelve mutants failed to respond in either one or both of our assays. Subsequent histological and electroretinographic analysis revealed unique deficits at various stages of the visual pathway, including lens degeneration (bumper), melanin deficiency (sandy), lack of ganglion cells (lakritz), ipsilateral misrouting of axons (belladonna), optic-nerve disorganization (grumpy and sleepy), inner nuclear layer or outer plexiform layer malfunction (noir, dropje, and possibly steifftier), and disruption of retinotectal impulse activity (macho and blumenkohl). Surprisingly, mutants with abnormally large or small eyes or severe wiring defects frequently exhibit no discernible behavioral deficits. In addition, we identified 13 blind mutants that display outer-retina dystrophy, making this syndrome the single-most common cause of inherited blindness in zebrafish. Our screen showed that a significant fraction (approximately 5%) of the essential loci also participate in visual functions but did not reveal any systematic genetic linkage to particular morphological traits. The mutations uncovered by our behavioral assays provide distinct entry points for the study of visual pathways and set the stage for a genetic dissection of vertebrate vision.

Citations

226 citations in Web of Science®
238 citations in Scopus®
Google Scholar™

Downloads

94 downloads since deposited on 11 Feb 2008
23 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 October 1999
Deposited On:11 Feb 2008 12:13
Last Modified:05 Apr 2016 12:13
Publisher:Society for Neuroscience
ISSN:0270-6474
Related URLs:http://www.jneurosci.org/cgi/content/abstract/19/19/8603
PubMed ID:10493760
Permanent URL: http://doi.org/10.5167/uzh-227

Download

[img]
Preview
Filetype: PDF
Size: 528kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations