Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-22710

Arratia, R; Barbour, A D; Tavaré, S (1992). Poisson process approximations for the Ewens sampling formula. Annals of Applied Probability, 2(3):519-535.

[img]
Preview
PDF
2MB

View at publisher

Abstract

The Ewens sampling formula is a family of measures on permutations, that arises in population genetics, Bayesian statistics and many other applications. This family is indexed by a parameter $\theta > 0$; the usual uniform measure is included as the special case $\theta = 1$. Under the Ewens sampling formula with parameter $\theta$, the process of cycle counts $(C_1(n), C_2(n), \ldots, C_n(n), 0, 0, \ldots)$ converges to a Poisson process $(Z_1, Z_2, \ldots)$ with independent coordinates and $\mathbb{E}Z_j = \theta/j$. Exploiting a particular coupling, we give simple explicit upper bounds for the Wasserstein and total variation distances between the laws of $(C_1(n), \ldots, C_b(n))$ and $(Z_1, \ldots, Z_b)$. This Poisson approximation can be used to give simple proofs of limit theorems with bounds for a wide variety of functionals of such random permutations.

Citations

Altmetrics

Downloads

11 downloads since deposited on 12 Apr 2010
1 download since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
DDC:510 Mathematics
Uncontrolled Keywords:Total variation; population genetics; permutations
Language:English
Date:1992
Deposited On:12 Apr 2010 12:30
Last Modified:23 Nov 2012 13:26
Publisher:Institute of Mathematical Statistics
ISSN:1050-5164
Publisher DOI:10.1214/aoap/1177005647

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page