The ILU iteration scheme is well known as an excellent smoother in a multigrid process. But up to now a restricting fact of the method was that, apparently, the algorithm can only be applied efficiently to finite-difference discretizations on rectangular grids. The problem to transfer the algorithm to finite-element discretizations is that the iteration depends on the numbering of the grid points and on the structure of the grid. In opposition to this, the basic advantage of finite elements is that one can use self-adaptive refinement strategies, to get problem-orientated grids, which have not a uniform structure. In this paper we explain how to apply the ILU method to arbitrary finite-element grids and develop strategies for accelerating the algorithm and making it vectorizable. In Section 3 we shall study the influence of the grid for the stability of the ILU iteration and give a somewhat surprising example, which makes us optimistic with regard to a generalization of the theoretical results to larger classes of problems. Finally, in Section 4 we report on some numerical tests for an eigenvalue problem with real physical background.

## ZORA Wartung

ZORA's new graphical user interface has been launched. For further infos take a look at Open Access Blog 'New Look & Feel – ZORA goes mobile'.

Sauter, S (1991). *The ILU method for finite-element discretizations.* Journal of Computational and Applied Mathematics, 36(1):91-106.

## Abstract

The ILU iteration scheme is well known as an excellent smoother in a multigrid process. But up to now a restricting fact of the method was that, apparently, the algorithm can only be applied efficiently to finite-difference discretizations on rectangular grids. The problem to transfer the algorithm to finite-element discretizations is that the iteration depends on the numbering of the grid points and on the structure of the grid. In opposition to this, the basic advantage of finite elements is that one can use self-adaptive refinement strategies, to get problem-orientated grids, which have not a uniform structure. In this paper we explain how to apply the ILU method to arbitrary finite-element grids and develop strategies for accelerating the algorithm and making it vectorizable. In Section 3 we shall study the influence of the grid for the stability of the ILU iteration and give a somewhat surprising example, which makes us optimistic with regard to a generalization of the theoretical results to larger classes of problems. Finally, in Section 4 we report on some numerical tests for an eigenvalue problem with real physical background.

## Citations

## Altmetrics

## Additional indexing

Item Type: | Journal Article, refereed, original work |
---|---|

Communities & Collections: | 07 Faculty of Science > Institute of Mathematics |

Dewey Decimal Classification: | 510 Mathematics |

Uncontrolled Keywords: | ILU method; finite elements; vectorization; stability; eigenvalue problem |

Language: | English |

Date: | 1991 |

Deposited On: | 29 Nov 2010 16:29 |

Last Modified: | 05 Apr 2016 13:28 |

Publisher: | Elsevier |

ISSN: | 0377-0427 |

Publisher DOI: | 10.1016/0377-0427(91)90228-C |

Related URLs: | http://www.ams.org/mathscinet-getitem?mr=1122960 http://www.zentralblatt-math.org/zbmath/search/?q=an%3A0738.65084 |

## Download

Full text not available from this repository.View at publisher

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.

You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.